
Guideline for the use
of Chemometrics

in Forensic Chemistry

EUROPEAN NETWORK OF FORENSIC SCIENCE INSTITUTES 
DRUGS WORKING GROUP

Ref. Code: DWG-CFC-001
Issue No: 001

April 2020



2	 Issue No. 001 	 Ref code: DWG-CFC-001 Ref code: DWG-CFC-001 	 Issue No. 001 	  3

INDEX

1	 AIMS.........................................................................................................4

2	 SCOPE......................................................................................................5

3	 DEFINITIONS AND TERMS.....................................................................7

4	 INTRODUCTION.......................................................................................9
	
	 4.1	 Chemometrics in Forensic Chemistry..............................................9
	 4.2	 Chemometrics for intelligence purposes and potential evidence 
		  in court	...........................................................................................14
	 4.3	 Description of the basic questions in Forensic Chemistry.............15

5	 DATA HANDLING...................................................................................21
	
	 5.1	 Verification of the quality of the data..............................................21.
	 5.2	 Exploration of data.........................................................................21.
	 5.3	 Selection of the ‘correct‘ parameters (variables)............................21
	 5.4	 Importing analytical data to ChemoRe...........................................23

6	 DATA PRE-PROCESSING.....................................................................26

	 6.1	 Visualization of the data.................................................................27
	 6.2	 Methods commonly used for data pre-processing.........................27
		  6.2.1	 Normalization.....................................................................28
		  6.2.2	 Standardization..................................................................30
		  6.2.3	 Z-scores.............................................................................31
		  6.2.4	 Data transformation...........................................................33.
		  6.2.5	 Principal component analysis............................................38

7	 DATA ANALYSIS....................................................................................39

	 7.1	 Classification techniques...............................................................39.
	 7.2	 Quantification: regression techniques............................................47
	 7.3	 Comparison by dissimilarity-based methods.................................51
	 7.4	 Principal component analysis........................................................52
	 7.5	 Hierarchical cluster analysis (unsupervised classification)............64

8	 WHICH DATA PRE-PROCESSING AND ANALYSIS TO USE 
	 FOR DIFFERENT KIND OF QUESTIONS?...........................................72

9	 METHOD VALIDATION..........................................................................73

	 9.1	 Validation of the applied method before going into practice or 
		  casework........................................................................................73.
	 9.2	 ROC curves...................................................................................74
		  9.2.1	 How to create ROC curves?..............................................74
		  9.2.2	 What information can be taken from ROC curves?...........75.
	 9.3	 Performance of classification systems: confusion matrices...........76

10	 ASSESSMENT / INTERPRETATION OF RESULTS..............................78

11	 EXAMPLES OF CHEMOMETRIC METHODS USED IN FORENSIC
 	 CHEMISTRY RELATED TO CASEWORK OF ILLICIT DRUGS............79

	 11.1	 Example 1 XTC tablets: case-to-case comparison by external 
		  characteristics................................................................................79
	 11.2	 Example 2. Amphetamine: case-to-case and database 
		  comparison....................................................................................88.
	 11.3	 Example 3. Cocaine: identification and quantitation......................99

12	 REFERENCES......................................................................................108

13	 APPENDIX	 .........................................................................................113

14	 AUTHORS IN ALPHABETICAL ORDER.............................................114

15	 ACKNOWLEDGEMENTS.....................................................................115



4	 Issue No. 001 	 Ref code: DWG-CFC-001 Ref code: DWG-CFC-001 	 Issue No. 001 	  5

1	 AIMS

There is a clear increasing trend in the use of chemometrics in forensic labora-
tories. This can be seen in forensic literature covering different disciplines such 
as drug profiling, arson debris analysis, spectral imaging, glass analysis, age 
determination, and more. In particular, current chemometric applications cover 
spectral (i.e. FT-IR) and chromatographic (i.e. GC-MS) data. All this has created 
a need for reliable and structured interpretation and assessment of both analyt-
ical and chemometric results.

From a literature survey the recently used data pretreatments and chemometric 
methods in forensic chemistry were identified. The common practices of chemo-
metrics are collected in order to help forensic scientists understand and utilize 
chemometrics in their everyday work tasks. Also, an easy to use software tool 
(ChemoRe) is created for this purpose

This Guideline and the software tool (ChemoRe) aims to provide an easy 
starting point for a forensic chemist to apply chemometrics and sharpen the 
understanding of the critical points in the forensic workflow from an incident to 
reporting of results. Together, the guideline and software tool will support routine 
forensic work and help create high-quality measures and processes that author-
ities can rely on.

This work is part of EU project: Steps towards European Forensic Area (STEFA) 
- Work package G02: Chemometrics: easy to use tools to process and interpret 
chemical data of illicit drug samples.

2	 SCOPE

The initiative to develop a guideline accompanied with a tailored software 
tool for forensic chemists enabling them to apply chemometric methods was 
taken by the European Network of Forensic Science Institutes (ENFSI) Drugs 
Working Group (DWG) during the Annual Meeting in 2015. An initial team of 
three senior forensic chemists and three forensic statisticians formed the DWG 
subcommittee Chemometrics. This combination of expert knowledge quickly 
proved fundamental. Thorough discussions were required to achieve a mutual 
understanding of knows and not-knows performing chemometrics in forensic 
chemistry in routine casework. Familiar standard terms in each discipline like 
identification, discrete variable, continuous (spectral) data, classification, inter-
pretation etc., allegedly understood by everyone in the same way, had to be 
discussed in depth and agreed until the objectives of the project were unequiv-
ocally understood.

The ENFSI DWG identified a deficiency in knowledge as well as in development 
and application of chemometric methods to solve questions regarding material 
comparison or classification either between seized samples or seized samples 
against a database. While the Working Group has organized trainings and work-
shops over several years, the number of laboratories exploiting chemometrics 
did not increase although the need was expressed. It turned out that some 
laboratories developing and applying chemometric methods had employed stat-
isticians among their personnel. Even with an understanding of the possibilities 
that chemometric methods can significantly support the forensic casework, the 
laboratories without a statistician on board hardly developed in house methods. 
A further obstacle was that no easy-to-use software tool, applicable by a forensic 
chemist without a broader statistical background, was available. 

The DWG subcommittee Chemometrics was therefore requested to fill this gap 
and to compose a tailored guideline and an easy-to-use software tool (called 
ChemoRe) for development and application of chemometric methods. The soft-
ware will help the laboratory to apply chemometrics starting from the data of 
the analytical instrument over validation of the method until assessment and 
reporting of the chemometric results. It was found essential to have a clear 
understanding of the forensic workflow and what are the questions assigned 
to the forensic laboratory as well as how the chemometric workflow proceeds. 
These are illustrated in Figures 4.1 and 4.2.

1  AIMS 2  SCOPE
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It is to be noted here, that in addition to chemometric methods this guideline 
focuses on the assessment and interpretation of chemometrics results with 
respect to chemical data. This approach applies no matter of the legal systems 
of different countries.

When final reporting is considered, national regulations, standards and prac-
tices need to be taken into account. Therefore, the final reporting phase, poten-
tially also covering further steps like evaluation (hypothesis-based determina-
tion of likelihood ratios), is not described in depth (see Chapter 10).

The project found great interest regarding quick realisation, exceeding the fields 
of drug analysis, as the principles can be applied in any other forensic discipline 
where similar data or databases occur. Probably due to this broad applicability, 
the work received funding through the European Union’s Internal Security Fund 
— Police: 779485 — STEFA — ISFP-2016-AG-IBA-ENFSI during a period of 29 
months from January 2018 to May 2020.

The content of this Guideline represents the views of the authors only and is their 
sole responsibility. The European Commission does not accept any responsi-
bility for use that may be made of the information it contains.

However, according to the concept of the project, the core elements in this 
guideline have been published in a peer reviewed journal [1, 2, 3]. The software 
tool named ChemoRe is based on R, a free software environment for statistical 
computing and graphics (https://www.r-project.org/) and depends heavily on the 
shiny-package (Winston Chang, Joe Cheng, JJ Allaire, Yihui Xie and Jonathan 
McPherson (2020). shiny: Web Application Framework for R. https://CRAN.R-
project.org/package=shiny).

This guideline is available on the ENFSI website (http://enfsi.eu/documents/
forensic-guidelines/). The software ChemoRe with its validation report and the 
user manual of ChemoRe are made available via the ENFSI webpage on EPE 
(Europol Platform for Experts). Further information on access can be obtained 
from the acting chairman of the ENFSI Drugs Working Group (http://enfsi.eu/
about-enfsi/structure/working-groups/drugs/).

3	 DEFINITIONS AND TERMS

The abbreviations given refer to the analytical and chemometric methods that 
are used throughout the guideline.

Table 3.1:	 Abbreviations and short descriptions of analytical and 
	 chemometric methods

Analytical methods
Abbreviation Short description
GC-MS Gas chromatography mass spectrometry
LC-TOFMS,  
LC-MS/MS,
LC-MS   

Liquid chromatography time-of-flight mass spectrometry,   
Liquid chromatography tandem mass spectrometry,
Liquid chromatography mass spectrometry

GC-FID Gas chromatography flame ionization detector  
Fast gas chromatography flame ionization detector

GC-IRMS Gas chromatography isotopic ratio mass spectrometry
ICP-MS Inductively coupled plasma mass spectrometry
ICP-AES Inductively coupled plasma atomic emission spectrometry
XRF / EDXRD X-ray diffraction spectrometry / Energy-dispersive X-ray 

diffraction
FT-IR Fourier-transform infrared spectroscopy
MIR Mid infrared spectroscopy
NIR Near infrared spectroscopy
Raman Raman spectroscopy

2  SCOPE 3  DEFINITIONS AND TERMS
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Chemometric methods
PCA Principal component analysis
OLS-R Ordinary least squares-regression
PLS-DA Partial least squares-discriminant analysis
HCA Hierarchical cluster analysis
LDA Linear discriminant analysis
PLS-R Partial least squares-regression
SVM Support vector machines
QDA Quadratic discriminant analysis
PCC Pearson’s correlation coefficient
SIMCA Soft independent modelling by class analogy
LogReg Logistic regression
CCSWA Common components and specific weights analysis
k-NN k-nearest neighbours
NN Neural networks
OPLS-DA Orthogonal projections to latent structures-discriminant 

analysis 
PA Predictive agreement
PCR Principal component regression
RF Random forest modelling
DA Discriminant analysis

4	 INTRODUCTION

4.1 	 Chemometrics in Forensic Chemistry

Forensic literature shows a clear trend towards increasing use of chemometrics 
(i.e. multivariate analysis and other statistical methods) when forensic data is 
gathered. This can be seen in different disciplines such as drug profiling, arson 
debris analysis, spectral imaging, glass analysis, age determination, and more. 
In particular, current chemometric applications cover low-dimensional (in this 
guideline also described as Type 1 data, e.g. drug impurity profiles, see also 
Chapter 5.3) [4-5] as well as high-dimensional data (Type 2 data, e.g. FT-IR 
spectra) [6-8] and are therefore useful in many forensic disciplines. Because 
of this, there is an increasing need in forensic chemistry for guidance on how 
to perform reliable and structured processing, analysis and interpretation of 
analytical data.

The forensic workflow in routine casework (Figure 4.1) usually starts at the 
police investigation site and ends in the courtroom. Physical evidence from the 
site collected by forensic investigators or police officers is analysed in a forensic 
laboratory according to the request of the police, prosecutor or the court of law. 
Traditionally, forensic samples collected or seized are subjected to physical and 
chemical analyses. The results of these analyses are typically used for identifi-
cation and quantification of effective substances in order to support the judicial 
process [6, 9].

Additional information to the forensic process (e.g. for illicit drug profiling) may 
be provided when the data is further analysed using statistical methods [10-13]. 
This application of multivariate analysis and other statistical methods, also 
called chemometrics, includes processing the data from the forensic chemical 
analysis in different ways, e.g. through data selection, data pre-processing or 
calculation of similarity scores between samples.

Chemometrics can provide additional information in complex crime cases and 
enhance productivity by improving the processes of data handling and inter-
pretation in various applications. Beside this use in routine chemical casework, 
chemometrics can be used to process large sets of case data for police tactical 
or intelligence tasks, as well as crime analysis and prevention purposes by 
enhancing the usability of database information [14-17].

3  DEFINITIONS AND TERMS 4  INTRODUCTION
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The results and conclusions of forensic analyses need to be communicated in 
a comprehensible form and explained with sufficient clarity to investigative units 
and to the court of law in order to be used effectively. Ultimately, the forensic 
analysis must answer the original request presented by the investigative unit.

Figure 4.1	 Illustration of a case workflow from incident to expert report, different 
operators involved and where in the process chemometrics would 
be applied

Data

Conversion of 
Data Format

Pre‐Selection

Pre‐processing

Classification Comparison

Chemical 
analysis

Data analysis

Quantification

Forensic 
material

Forensic 
question(s)

Identification

Visualisation

Operational and chemical Assessment

Evaluative 
Question

Evaluative 
Assessment 

Final Report

YES

NO

Sa
m

pl
e 

Pr
ep

ar
at

io
n

C
he

m
om

et
ric

s
(C

he
m

oR
e)

As
se

ss
m

en
t

R
ep

or
tin

g

Figure 4.2	 Steps before, during and after applying chemometrics (ChemoRe)
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According to Matthias Otto’s textbook Chemometrics [18] can be defined as:

“the chemical discipline that uses mathematical and statistical methods, (a) to 
design or select optimal measurement procedures and experiments, and (b) to 
provide maximum chemical information by analysing chemical data”

As presented in article 1 [1], a literature survey was performed to summarize 
currently used chemometric methods in the field of forensic chemistry. Based on 
that survey a selection of common practices has been collected to this guideline 
and the software tool ChemoRe, aimed at helping forensic chemists to utilize 
chemometrics in their everyday work tasks.

Analytical chemists are using chemometrics in order to extract information of 
multivariate chemical data. Modern analytical instruments or a combination of 
instruments provide a tremendous amount of data. Usually a high number of 
descriptive variables but a comparable low number of samples are available 
and need to be correlated answering complex questions like [19]:

–	 Visualisation of multivariate data sets,
–	 Relationships between data sets,
–	 Recognition of internal structures,
–	 Classification or identification
–	 Comparison
–	 (Quantification)

Figure 4.3 summarizes the specific types of analytical methods used to produce 
the analytical data. And Figure 4.4 illustrates which chemometric methods were 
used to treat Type 1 and Type 2 data.

 

Type 1 data Type 2 data
GC‐MS 14 GC‐MS 0
UPLC‐QTOF 4 LC‐MS 0
GC‐FID 3 GC‐FID 0
XRF 3 XRF 0
ICP‐MS 2 ICP‐MS 0
GC‐IRMS 1 GC‐IRMS 0
ICP‐AES 1 ICP‐AES 0
NIR 0 NIR 3
Raman 0 Raman 3
MIR 0 MIR 12
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Figure 4.3	 Analytical methods used to produce Type 1 and Type 2 data, as found 
in the literature survey (41 articles from 2011 to 2018) [1

Figure 4.4	 Chemometric methods used to produce Type 1 and Type 2 data, as 
found in the literature survey (41 articles from 2011 to 2018) [1].
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It can be noted that the analytical method used depends strongly on whether 
the data is of Type 1 or Type 2. It is natural that spectroscopic methods produce 
Type 2 data. On the other hand, GC-MS and LC-MS methods prevail with Type 
1 data.

As for chemometric methods, it can be seen from Figure 4.4 that PCA, PLS-DA, 
HCA and LDA are all quite frequently used, for both types of data. There is no 
clear dependence between the type of data and chemometric method. Addi-
tionally Figure 4.4 shows that there is a wide variety of chemometric methods 
applied to both Type 1 and 2 data.

4.2	 Chemometrics for intelligence purposes and potential evidence in court

Forensic science (like chemical measurement) is considered as a mean to 
generate forensic evidence in a probative process. The utilisation of the chemical 
or physical trace (e.g. analytical results from physical remnant of an activity) has 
for long focused only on its primary role as evidence [1-3, 16-17, 20]. However, in 
the past years numerous authors have emphasized the contribution of forensic 
science and the data provided by the latter to crime analysis and to investiga-
tion [17]. In the field of illicit drugs, the importance and benefit of forensic data 
(i.e. drug profiling) as a law enforcement tool has been widely recognized and 
discussed in literature. The analytical methods do not only allow to identify and 
quantify illicit compounds of questioned material to support the judicial process 
but by further processing (e.g. with the help of chemometric methods) provide 
additional information for intelligence purposes [5]. Until today, only few coun-
tries have put their efforts to develop, incorporate and implement the routinely 
use of illicit drug profiling during the investigation process. However, many 
authors have highlighted (the importance and benefits of illicit drug profiling as 
an important law enforcement tool principally during the investigation for tactical 
and strategic purposes at national and international level [21-23]. 

When illicit drug profiling is used as piece of evidence in court, usually investi-
gative units or prosecutors have asked for case to case comparisons [5, 21-23]. 
The sought information in this case is to know whether seized substances share 
a common origin in order to prove, for instance, that cases under investigation 
are related or drug trafficking. In that case, the comparison results are added 
as piece of evidence to be presented in court. The chemical or physical profiling 
may relate the substances or the materials to each other but not the individuals 

that are behind these seizures. Therefore, usually more information is needed 
to assess the accused’s conviction in court.

4.3	 Description of the basic questions in Forensic Chemistry

Of course, the range of questions Forensic Chemistry is requested is much 
broader than given in this subchapter. Beside the need to report which compounds 
are present in a sample (factual drug identification) or which amount of an iden-
tified compound is present (quantitative analysis), more complex questions may 
concern attributing a sample to a class (classification or grouping) or elucidating 
the similarity of one sample to another sample (comparison). The terms classi-
fication and comparison are described in more details hereinafter.

Classification has several aspects to consider and to differentiate for a good 
handling and communication.

Characteristics of data or in a more practical way – our samples to analyse – 
can be such distinct that an overlapping is not possible. Metaphorically speaking 
the sample can only belong to a predefined ‘box’ and there is no overlapping 
of this box to any other. Analytical results appoint to just one of these boxes. In 
such cases – also known as factual analysis – there is no reasonable uncer-
tainty to consider. The assessment of the analytical result(s) may only respect 
the validity of the applied method (quality assurance aspects) to the kind of 
question asked. If the predefined ‘boxes’ are fully separated, also chemometric 
methods are capable to appoint a sample to just one of these boxes. Further-
more, if the characteristics of a class are discriminative enough, a class can be 
reduced to 1 representative, e.g. a substance like cocaine. In such a case the 
classification is considered as identification.

Examples are:

•	 Pharmaceutical tablets, original or fake

•	 Synthetic routes if specific substances are present

4  INTRODUCTION 4  INTRODUCTION
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Figure 4.5	 Illustration for a classification by pre-defined, non-overlapping classes

However, in practice, boxes can overlap to a certain extent, i.e. the character-
istics of a sample can point only to a certain extent to one box, but to a lesser 
extent also to an adjacent one. If certain classes (boxes) are pre-defined, the 
chemometric application can still support a classification.

Examples are:

•	 Distinction of drug-hemp and fibre-hemp
•	 Distinction of South-West Asia or South-East-Asia heroin

Figure 4.6	 Classification by pre-defined, overlapping classes [24]

When classification’ is wished out of a dataset, a ‘but there are no or only vague 
impressions of the kind and number of ‘classes’, a grouping can be calculated 
by means of chemometric applications. Then the term of grouping should be 
used instead of (pre-defined) classification as the groups are ‘post-created’ by 
the chemometric application. By changing (increasing) the dataset, the number 
and size of groups and the criteria to appoint a group can change, while by clas-
sification, the criteria of a class are fixed.

Examples are:

•	 Drugs profiling by the assumption that different batches can be distin-
guished. Each batch represents a group and it cannot be pre-determined 
how many batches are in a database. Batches are added or deleted 
(because they are supposed to be consumed) from the database.

4  INTRODUCTION 4  INTRODUCTION
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Figure 4.7	 Grouping as a result of a chemometric application [25]

In forensic drug chemistry a focus on the elucidation of strategic information out 
of chemical investigations on seized illegal drugs can lead to such a grouping, 
i.e. ‘drug classification’. It needs a systematic chemical investigation over a 
longer period of time applying the same analytical scheme on a certain amount 
of individual drug samples. Prominent information is the determination of origin, 
common methods of clandestine drug manufacturing, identifying key precursor 
chemicals and dismantling distribution networks [4, 14, 26-27]. Also, estima-
tions of how long a laboratory has been operating and what is the scale and 
output volumes of a certain drug production site [28]. The aim is to support 
drug intelligence programs of law enforcement with either general information 
or deeper intelligence information.

Comparison supports the investigative side of law enforcement on a case-file 
based level. Statements of similarity provide links between seized drug samples, 
so comparison constitutes an evidential part of forensic expertise. It may provide 
information on the relation of drug dealers (i.e. seized material attributed to them) 
and users or the relation between different drug dealers for prosecution purposes.

The chemical profiling of heroin can be taken as an example. Two chromato-
grams of pairwise (peak-wise) comparisons on the basis of impurities formed 
during manufacturing are presented in Figures 4.8 and 4.9.

Figure 4.8	 Very high similarities of two heroin samples by comparison (impurity 
profiling)

Figure 4.9	 Quite a large difference of two heroin samples by comparison (impurity 
profiling)

4  INTRODUCTION 4  INTRODUCTION
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Using the chromatograms, the forensic chemist could only describe verbally 
the visual similarity of the two samples and making maybe some inferences by 
knowing which peak represents which substance (impurity).

The chemist could make some conclusions like if these peaks come from the 
origin of a plant or synthetic route or hydrolysis/decomposition or being an 
adulterant or diluent. However, a number or percentage of similarity cannot be 
expressed by just a visual comparison of the chromatogram.

Here the strength of chemometrics comes into play giving a number or degree 
of similarity (expressed like as a distance of two samples in an n-dimensional 
space).

After validation of the applied chemometric method a threshold number / 
distance (see also the given examples in Figures 11.4, 11.6 or 11.11) gives the 
degree of similarity and will enable a conclusion. 

The chapters 7 to 11 of this guideline will deepen the description and under-
standing of that process.

5	 DATA HANDLING

5.1	 Verification of the quality of the data

In forensic casework of illicit drug analysis, the question to be answered first 
is: ‘Is an illicit drug present?’ In forensic laboratories, the requirements for the 
detection and identification or quantification of drugs are predefined, tested and 
validated for the methods in use. However, each technique has its advantages 
and limitations. The quality control measures in use (e.g. internal standard, cali-
bration samples, QC samples and blank samples) has to be acceptable and the 
correctness of the data (e.g. retentions time, correct identification and integra-
tion of the compound) needs to be checked before starting the data processing 
(by chemometric methods).

ENFSI DWG Best practise manual (BPM) for controlled drug analysis (DWG-
CDA-001) gives recommendations covering analytical methods, procedures, 
quality principles, training processes and approaches to the forensic analysis 
of illicit drugs[29].

5.2	 Exploration of data

Sometimes a signal from an analytical system might have a very low peak 
height or area, and is therefore below the integration threshold. This is due to a 
low concentration, small sample size (weight), dilution during sample pretreat-
ment, injection volume, split factor etc. The output value of such a small (not 
integrated) signal will be zero, although visible as a signal. However, if a small 
signal is considered as relevant variable to be included in the chemometric 
application, an artificial correction is necessary to the numerical output. The 
zero value is not valid for further calculations and therefore a very small value 
above zero needs to be included as a variable in the chemometric application.

5.3	 Selection of the ‘correct‘ parameters (variables)

Type 1 data typically consists of a series of signals with peak height or an 
integrable peak area determining the variable. Each peak usually stands for a 
single characteristic information (i.e. a molecule, an ion, an element, etc.). The 
relevance of each signal for answering the question asked is to be evaluated at 
the earliest possible stage. This evaluation needs expert knowledge regarding 

4  INTRODUCTION 5  DATA HANDLING
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the overall composition of the item like the contribution of impurities from the 
biosynthesis or lab synthesis, including processing and purification steps. Irrele-
vant signals might be included in the data imported to chemometric method. This 
irrelevant data may or may not have influence to the result regarding similarity 
of two items. Irrelevant variables could be ‘filtered’ out by regression methods 
like PCA (see chapter 7.4). However, it is logic and preferable that only relevant 
signals are chosen as variables for chemometrics.

For example, in illegal cocaine seizures, truxillines and cis- and trans-cinnam-
oylcocaine are part of the biosynthesis remaining in the final product as impu-
rity. Norcocaine is built through the chemical purification step and ‘man made’. 
Both contribute to a very specific total composition assumed to change in each 
production batch which is used to determine the similarity or dissimilarity of 
seizures regarding the source attribution to a certain batch [30].

Another fact to consider the significance of each variable and its reasonable 
selection for the chemometric application is its correlation to another variable. 
Illustrated by cocaine seizures again, benzoylecgonine is the first hydrolysis 
product of cocaine and found in every sample. The more benzoylecgonine is 
built, the less cocaine is in the sample while the other impurities are not affected 
by this hydrolysis and do not change the profile. Benzoylecgonine and cocaine 
are therefore correlated variables and its use as variable should be carefully 
considered and tested through the method validation (see chapter 7). This does 
not mean that correlated compounds shall be excluded. One possible way is to 
take the sum of both variables (its areas) as a new variable.

Type 2 data, typically spectral data, are commonly used as such, i.e. the whole 
spectral range. However, it might be sufficient, that for answering the question 
asked only one or more specific spectral bands or ranges cover the informa-
tion relevant for comparison or classification. Type 2 data usually comprises 
hundreds of variables, each representing a measurement point in a continuous 
domain such as time or wavelength. The variables are thus obtained by sampling 
from a continuous function (curve), but serve to represent the entire function. 
These variables are therefore often highly correlated, and as opposed to type 
1 data, do not represent any clearly defined features of the measured material 
by themselves. Instead, the information is often contained in the correlations 
between these variables.

Spectroscopic techniques such as FT-IR, NIR and Raman encompass informa-
tion on the composition of the sample material, usually a mixture of components. 
Spectroscopic techniques don´t isolate the response of individual compounds, 
unlike chromatographic (Type 1) techniques. This integral information on the 
material can also be used for comparison or classification in chemometric appli-
cations.

5.4	 Importing analytical data to ChemoRe

The data provided by the analytical methods can roughly be categorized into 
two types based on their properties:

Type 1 data consists of measurements with relatively few dimensions or vari-
ables, usually much less than a hundred. This includes, for example, data from 
calculating the areas of peaks of interest appearing at specific retention times 
in chromatographic signals. Such data often represents amounts of distinct 
compounds or other clearly separate characteristics of an item that describe its 
properties.

Type 2 data consists of measurements over a continuous range. This includes 
spectroscopic data where the spectrum associated with the material is measured 
over, e.g., wave lengths or raw chromatographic signals where measurements 
are made over retention time. Type 2 data usually comprises hundreds of vari-
ables, each representing a measurement point in a continuous domain such 
as time or wavelength. The variables are thus obtained by sampling from a 
continuous function (curve), but serve to represent the entire function.  These 
variables are therefore often highly correlated, and as opposed to Type 1 data, 
do not represent any clearly defined features of the measured material by them-
selves. Instead, the information is often contained in the correlations between 
these variables.

The data must be provided in a specific format in order to be imported to the 
ChemoRe software. ChemoRe currently supports CSV (*.csv) and Excel (*.xls, 
*.xlsx) file formats for data input. These files must further be arranged so that 
the columns correspond to the variables (e.g. chemical compounds, classes or 
IDs) and the rows correspond to the samples. 

In the data, the names of the variables should always be at the first row. 
When it comes to CSV-files, the user should be mindful of the delimiter and 
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decimal separator used in their respective locale. In English speaking countries 
the default is typically to use a comma as a delimiter and a point as decimal 
separator but in some countries the comma is used as the decimal separator 
while a semicolon is used as the delimiter. 

ChemoRe allows selecting these according to the settings used to write the 
data file. When using Excel files, this is not an issue. Table 5.1 exemplifies the 
formatting of the data using the ‘iris’ dataset provided with many statistical soft-
ware. Here, Item #, Sepal.Length, Petal.Length, Petal.Width and Species are 
variables and each row under the first one corresponds to a single measured 
sample.

Table 5.1: Illustration of formatting data for ChemoRe

Item # Sepal.
Length

Sepal.
Width

Petal.
Length

Petal.Width Species

1 5,1 3,5 1,4 0,2 setosa
2 4,9 3 1,4 0,2 setosa
3 4,7 3,2 1,3 0,2 setosa
4 4,6 3,1 1,5 0,2 setosa
51 7 3,2 4,7 1,4 versicolor
52 6,4 3,2 4,5 1,5 versicolor
53 6,9 3,1 4,9 1,5 versicolor
54 5,5 2,3 4 1,3 versicolor
55 6,5 2,8 4,6 1,5 versicolor
103 7,1 3 5,9 2,1 virginica
104 6,3 2,9 5,6 1,8 virginica
105 6,5 3 5,8 2,2 virginica
106 7,6 3 6,6 2,1 virginica
107 4,9 2,5 4,5 1,7 virginica

For example, Agilent instruments by ChemStation software allow data export to 
CSV –file via Custom Report function. Obtained CSV- file can be converted to 
Excel format and organized as described before importing the data to ChemoRe 
software.

In the case of Type 2 data, additional steps might be needed. If the data consists 
of spectra, each wavelength should be considered a variable. This means each 
spectrum included in the data should have a measured intensity at the same 
wavelength number.
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6	 DATA PRE-PROCESSING 

As explained in Chapter 5, the data acquisition from an analyzed sample is done 
via the analytical instrument and may be steered by the analyzing chemist. The 
data processing like integration of peak areas is fully defined by the analytical 
method setup, and by choosing the data reporting method the analyzing chemist 
moreover can decide on a certain selection of information to be exported.

These steps can be automatized using macros. Templates (e.g. validated 
macros) for the most used analytical instruments (GC-MS and FT-IR) are 
provided by the ENFSI DWG upon request.

As a third step before data pre-processing, the forensic chemist may use chem-
ical knowledge in the manual selection of data with respect to the question 
asked (see also Chapter 5.2). Diluents or decomposition products might e.g. be 
of non-interest or are very strongly correlated to other variables and do not need 
to be considered in the final dataset. It may be beneficial to eliminate variables 
contributing less information from the dataset immediately, as also explained in 
Chapter 5.2. On the other hand, computer performance nowadays allows fast 
calculations with large number of potentially correlated or not obviously discrim-
inative variables, so potential discriminative information of variables at the stage 
of the untreated .csv file should not be thrown overboard without a good reason. 

The starting point for the ChemoRe software is then the dataset obtained through 
the steps described above, in .csv file format. The analytical data is categorized 
into Type 1 or Type 2 data, based on whether they are low- or high-dimensional 
in the number of variables (see Chapter 5.3), ChemoRe is able to handle both 
types.

Now the first step of the chemometric method development is to consider the 
need of data pre-processing. Data pre-processing can consist of e.g. data 
normalization, data transformation or dimension reduction. For this a variety of 
methods exist, such as standard normal variate transformation, square or fourth 
root or logarithmic transformations or principal component analysis. Visualiza-
tion of the data may lead the way as to what data pre-processing is to be used 
and is discussed in Chapter 6.1. The purpose and advantages and disadvan-
tages of the various types of data pre-processing are explained in more detail 
in Chapter 6.2.

6.1	 Visualization of the data

Different visualization methods like box-plots and histograms can be helpful 
in the selection of data pre-processing methods. These methods indicate the 
distribution and range of each variable. It is important to note that box-plots are 
not necessarily a suitable visualization tool to select the most powerful discrim-
inative variables of the dataset. This is because a variable with low inter-vari-
ability could still be a well discriminative variable. Box-plots might help however 
in the setup of the method, to visualize the effect of data pre-processing to get 
weighed contributions of each selected variable and as such is integrated in 
ChemoRe. An Excel-based macro file for data visualization is provided by the 
ENFSI Drugs Working Group upon request.

6.2	 Methods commonly used for data pre-processing

There are several methods that can be applied for data pre-processing. These 
can be used alone or in combination. The overall purpose of data pre-processing 
is to meet requirements on the data for the specific chemometric method used, 
more specifically the underlying statistical inference procedures. If one uses the 
raw analytical data in the chemometric method, the results of the methods will 
often not be reliable.

As an example, assume we have 20 samples of seized amphetamine powder 
and the analytical data are chromatograms of these samples. Assume further 
that these samples are considered to represent some source of interest (e.g. 
production of amphetamine powder at a particular illegal laboratory). There may 
be striking differences between the chromatograms of a number of samples, 
and these differences may be assessed and understood from a chemical point 
of view. However, the differences may lead to a chemometric output that is not 
in concordance with such a chemical understanding. The reason for this is that 
the chemometric method may be such that the data it uses should show what 
is referred to as “normal variation”, i.e. varying symmetrically around a centre 
point. If this is not the case, then the striking differences may be interpreted by 
the chemometric method as anomalies which do not fit with the chemist’s view 
of the situation.

There is of course statistical theory behind recommendations of data pre-pro-
cessing, but in general we can say that there should not be too much imbalance 
in the data. Data pre-processing aims at scaling or transforming the original 
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analytical data, without losing much relevant information, so that the pre-pro-
cessed data behave according to the statistical models that are assumed in the 
chemometric methods. Most of the conclusions that are expected to be drawn 
from the chemometric analysis can also be drawn using transformed data. 
The most important exception is when the chemometric method is designed 
to predict the actual value of a sample, for instance quantifying the purity. The 
predictions must then be back-transformed to the original scale. This procedure 
is usually already implemented in the software used, and the chemist should 
normally not need to bother about that.

The most commonly used data pre-processing procedures include normaliza-
tion, arithmetic transformations and principal component analysis (PCA). They 
will be described below.

6.2.1	 Normalization 

Normalization is used to adjust values measured on different scales to a notion-
ally common scale. E.g. each target variable in a sample (like a chromato-
graphic peak area of a target compound) is divided by a certain number, such 
as the concentration of an effective substance in that sample, or with the sum 
of all target peaks. The result of this will be that transformed peak areas are 
closer to each other in absolute value, whereas relative differences between 
them are kept. After transformation the values have less chemical meaning, 
although ratios of peak areas may have an element of chemical interpretation. 
The advantage of the transformation is that the chemometric method will not 
base conclusions on the fact that absolute areas of some peaks are dominating 
much smaller ones. In this way the smaller peaks are interpreted with equal 
importance as the peaks with large areas, and not only as noise.

As an illustrating example we consider peak areas of the substance N-Benzylpy-
rimidine appearing as an impurity compound in amphetamine samples. For 744 
casework samples of amphetamine powder, in Figure 6.1 to the left a histogram 
of the original peak areas of N-Benzylpyrimidine are shown, and to the right a 
histogram of the peak areas divided (normalized) by the internal standard used 
in the chromatographic analysis of the sample. Comparing the two graphs it 
can be seen that in the left graph the x-axis ranges from 0 to 70,000,000 which 
means there are enormous differences in peak areas of N-Benzylpyrimidine 
between the 744 samples, while in the right graph the range is from 0 to 35. The 
shapes of the two histograms are very similar though, which means that the 

relative sizes of the peak areas are to a large extent kept, while they are much 
closer in absolute value.

  

 
Figure 6.1	 Histograms of original peak areas of N-Benzylpyrimidine in 

744 samples of seized amphetamine powder (to the left) and 
normalized peak areas by dividing the peak area with the peak 
area of the internal standard used (to the right)
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6.2.2	 Standardization

By standardization it is usually meant that normalization of individual variables 
takes place based on their standard deviations, i.e. replacing each value y 
with y/s, where s is the calculated standard deviation based on all values. The 
formula for calculating s is

where n is the number of data points (y1, y2, … , yn) and 

that is the mean (or average) of all values.

For the 744 samples of amphetamine powder, the standard deviation of the 
peak areas of N-Benzylpyrimidine is 10,489,823. Dividing all 744 peak areas 
by 10,489,823 produces standardized peak areas. In Figure 6.2 a histogram is 
shown of these values. As we can see (and expected) the standardized data 
behave like normalized data, i.e. the range of values is small so that the values 
from different peak areas are closer in absolute value, while their relative sizes 
are (to a large extent) kept.

Whether data should be normalized or standardized is a question related to the 
chemometric method applied. Some methods will require standardized values 
because the underlying statistical model is designed for that. That is due to the 
fact that the standard deviation of standardized values is always equal to one, 
which might be a requirement. For most chemometric methods it will not matter 
whether normalization or standardization is used as pre-processing. They both 
perform scaling of the original data, and the choice to be made is that of a suit-
able scaling constant.
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Figure 6.2	 Histograms of standardized peak areas of N-Benzylpyrimidine 
in 744 samples of seized amphetamine powder (same original 
data as those used for producing Figure 6.1). The original peak 
areas have been divided by their standard deviation 10,489,823

6.2.3	 Z-scores

A third normalizing procedure is by means of so-called z-scores. Z-scores are 
calculated by replacing each value y by the value

that is the z-score is the difference between the current value and the mean of 
all values divided by the standard deviation
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A third normalizing procedure is by means of so-called z-scores. Z-scores are calculated 
by replacing each value y by the value 

z � y � y�
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that is the z-score is the difference between the current value and the mean of all values 
divided by the standard deviation 

After performing this transformation the resulting values (z1, z2, … , zn) will have a mean 
value (average) of zero and a standard deviation of 1. In Figure 6.3 a histogram is shown 
of the z-scores of the 744 peak areas for N-Benzylpyrimidine used to produce Figures 6.1 
and 6.2. Here the mean is 8,568,532 and the standard deviation (as before) 10,489,823. 
Hence the z-scores are calculated by replacing each peak area y with z=(y – 8,568,532) / 
10,489,823. 
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After performing this transformation the resulting values (z1, z2, … , zn) will have 
a mean value (average) of zero and a standard deviation of 1. In Figure 6.3 a 
histogram is shown of the z-scores of the 744 peak areas for N-Benzylpyrimi-
dine used to produce Figures 6.1 and 6.2. Here the mean is 8,568,532 and the 
standard deviation (as before) 10,489,823. Hence the z-scores are calculated 
by replacing each peak area y with z=(y – 8,568,532) / 10,489,823.

Figure 6.3	 Histograms of z-scores of the peak areas of N-Benzylpyrim-
idine in 744 samples of seized amphetamine powder (same 
original data as those used for producing Figure 6.1). The 
mean 8,568,532 of the peak areas have been subtracted from 
each peak area and these differences have been divided by the 
standard deviation 10,489,823 of the peak areas

The shape of the histogram in Figure 6.3 is (as expected) the same as of the 
histogram in Figure 6.2, while the location of the histogram in Figure 6.3 is 
translated to the left. 

The purpose of computing z-scores is not so much to produce values with zero 
mean and standard deviation 1, but to make the transformed values closer to a 
so-called standard normal distribution. A normal distribution is always symmetric 
around its mean and a standard normal distribution has zero mean and standard 

deviation 1. The letter ‘z’ stems from that in the statistical literature a random 
variable with a standard normal distribution is often denoted as ‘Z’. Several of 
commonly used chemometric methods, e.g. linear discriminant analysis, have 
as a requirement that the variables involved follow normal distributions. If they 
deviate significantly from normal distributions, the underlying statistical model 
will provide erroneous results and hence the output from such an analysis will 
not be very reliable.

6.2.4	 Data transformation 

Data transformation is the application of a deterministic mathematical function 
to each point in a data set so that each data point yi is replaced with the trans-
formed value wi = f(yi), where f is the function applied. Transforms are usually 
applied so that the data appear to better meet the assumptions of the underlying 
statistical inference procedure of the chemometric method that is to be applied, 
or to improve the interpretability or appearance of graphs. It is important though 
to remember that no chemical understanding of transformed data should be 
expected.

There are a number of standard transformations used in chemometrics of which 
we will present three.

Square root transformation is as it reads to replace each data point y with its 
square root y0.5. The effect is to some extent the same as with normalization, i.e. 
that the transformed values are closer to each other in absolute value. However, 
a more important effect is that data points that are heavily deviating in abso-
lute value from the majority of the data points will after taking square roots be 
much closer. This transformation thus affects large values more than it affects 
small values, and in turn the entire transformed data set looks more symmetric 
than the original data set, i.e. has more the shape of values randomly spread 
around a centre point. This also implies that the transformed data are closer to 
being normally distributed, which (as said before) is an important requirement 
for some chemometric methods (like linear discriminant analysis). Feeding such 
a method with asymmetrical data will render an output that is not reliable.

In Figure 6.4 a histogram is shown of square root transformed peak areas of 
N-Benzyl-pyrimidine in the 744 samples of seized amphetamine powder illus-
trated in Figure 6.1. Comparing this graph with the left graph of Figure 6.1 (i.e. 
the histogram of original peak areas) we can see that the distribution (variation) 
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is less skewed with the square root transformed peak areas. However, we cannot 
say that it has turned to be symmetric.

Figure 6.4	 Histograms of square root transformed peak areas of 
N-Benzylpyrimidine in 744 samples of seized amphet-
amine powder (same original data as those used for 
producing Figure 6.1)

Square root transformation is a first choice when one wants to reduce the 
excess influence of large values and make the data more symmetric. However, 
some data sets show such strong deviations from symmetry that the square 
root transformation is not sufficient. The next choice is then often to use the 
fourth root transformation, i.e. replacing each data point y with its fourth root 
y0.25. This transformation affects large values even more than the square root, 
still not affecting small values that much. In Figure 6.5 a histogram is shown of 
fourth root transformed peak areas of N-Benzylpyrimidine in the 744 samples of 
seized amphetamine powder illustrated in Figure 6.1. The shape of this histo-
gram is now almost symmetric and definitely less skewed than the histogram in 
Figure 6.4. This means that the fourth root transform is better than the square 

root transform if the aim is to make data (more) symmetric. We might even 
conclude that the fourth root transformation have excessed the aim in that the 
shape is almost left-skewed (compared to the original right-skewed shape).

Figure 6.5	 Histograms of fourth root transformed peak areas of N-Ben-
zylpyrimidine in 744 samples of seized amphetamine powder 
(same original data as those used for producing Figure 6.1)

Common for square root and fourth root transformations is that they cannot be 
used with negative values. Such values are of course not natural to obtain as 
analytical output, but if the analytical data has been pre-processed with stan-
dardization or z-scores (see above) it is not possible to compute square roots or 
fourth roots (or any roots).

Should the data set show even stronger deviations from symmetry that cannot 
be alleviated with fourth root transformation, the next choice is to use the loga-
rithm (or simply log) transformation. That is, each data point y is replaced by its 
natural logarithm ln(y) = loge(y). It is also the logarithm that is implemented as 
the default logarithm in many statistical software. In Figure 6.6 a histogram is 
shown of logarithm transformed peak areas of N-Benzylpyrimidine in the 744 
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samples of seized amphetamine powder illustrated in Figure 6.1. The shape 
of this histogram is now clearly left-skewed, which means that the logarithm 
transformation is too strong for these data. The aim was to make data more 
symmetric and this way we have rather made them asymmetric in the other 
direction.

Figure 6.6	 Histograms of logarithm transformed peak areas of N-Ben-
zylpyrimidine in 744 samples of seized amphetamine powder 
(same original data as those used for producing Figure 6.1)

Logarithms cannot be used with zeros (nor with negative values), and while 
negative values are not expected in analytical outputs zeros may very well be. 
This problem can be circumvented by replacing the zeroes with a small value, 
small in that sense that it would not be of the same magnitude as generally 
small values in the analytical output. For instance, in a chromatogram there may 
be very small peaks, sometimes even hard to discern, but they have chemical 
significance. One way to find a suitable “small value” for replacement of zeros 
would be to use the lowest peak area divided by 100 as a general replacement 
value. Another way could be to use the limit of detection.

It is always of great importance to assess the presence of zeros in analytical 
output. Some zeros may be structural, and if so, these variables should some-
times be omitted from chemometric analysis. For instance, a sample material 
in which a particular substance is completely missing (no peak in the chro-
matogram) cannot easily be chemometrically compared with a sample material 
in which this substance is present. There must be a manual comparison of 
the analytical outputs before any chemometric method is considered. Making a 
distance calculation between samples like this may give very misleading results. 
However, sometimes the zeros are there simply because the concentration of the 
corresponding substances is so small that they couldn’t be detected in the chro-
matographic analysis. In that case the replacement of these zeros with a small 
value as described above makes sense in the subsequent chemometric analysis.

If we would like to make the original peak areas of N-Benzylpyrimidine in the set 
of 744 samples of amphetamine powder looking more normally distributed, we 
should first transform the peak areas so that the transformed values are more 
symmetric. As could be seen above, this can be achieved by applying the fourth 
root transform. Thus, calculating z-scores on fourth root transformed data would 
possibly give us what we are looking for. In Figure 6.7 is shown a histogram of 
z-scores of fourth root transformed peak areas of N-Benzylpyrimidine in the 744 
samples of seized amphetamine powder. Note that for calculating the z-scores 
we have to calculate the mean and the standard deviations of the fourth root 
transformed peak areas, but we do not explicitly show these numbers here 
since they have no chemical meaning.
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Figure 6.7	 Histograms of z-scores of fourth root transformed peak areas 
of N-Benzylpyrimidine in 744 samples of seized amphetamine 
powder (same original data as those used for producing Figure 6.1)

The shape of the histogram in Figure 6.7 is close to symmetric around the 
value 0. We can also see that the range of values is between roughly –2.5 and 
2.5. This corresponds quite well with a standard normal distribution, since for 
such a distribution about 95% of the values are between –2 and 2 and about 
99% of the values are between –2.6 and 2.6. Hence, z-scores of fourth root 
transformed peak areas of N-Benzylpyrimidine would fit well with the use of e.g. 
linear discriminant analysis.

6.2.5 	 Principal component analysis

Principal component analysis or PCA is another common way of performing 
data pre-processing. PCA is a multivariate method that is used to simplify inter-
pretation of large data matrices. The procedure involves replacement of original 
variables with a reduced number of ‘principal components’, which explain the 
variation in the outcomes of the raw data as efficiently as possible. Since PCA 
is used both as a tool for data pre-processing as for data analysis it will be 
discussed in depth in Chapter 7.

7	 DATA ANALYSIS

In the following a description is given of different types of methods used to 
further analyse pre-processed data. Statistical analysis of chemical data 
depends largely on the forensic question. If the question is on identification or 
classification, various classification methods can be used to answer questions 
where it is necessary to assign a sample to one of a number of predefined 
classes or when one wishes to identify a compound. Regression can be used 
to quantify the amount of a substance in a sample based on predictor vari-
ables. Dissimilarity measures can be used to compare samples to each other, 
with high values of dissimilarity indicating a different origin and low values of 
similarity indicating a same origin. As an extension of this idea, clustering can 
be used to group samples based on their similarity in order to obtain groups of 
samples with possibly the same origin. For all of these questions, one may use 
dimensionality reduction methods to simplify the data and extract relevant vari-
ables for further analysis.

7.1	 Classification techniques

As stated, if the forensic question is on identification or classification, various 
classification methods can be used. Three important examples are linear 
discriminant analysis, logistic regression and partial least squares discriminant 
analysis.

Linear discriminant analysis

In Linear Discriminant Analysis (LDA), a linear combination of features is sought 
for that yields an optimal division into two classes of the data under consider-
ation. The procedure may be generalized to more than two classes.

LDA is a ‘supervised’ learning method, which means that all data points in the 
training data set must contain information concerning the class from which that 
data originates. Moreover, the method is constructed to be used with normally 
distributed features (variables), and if they show severe deviations from 
such distributions, the output may not be reliable. However, as was shown in 
subchapter 5, it may be possible to transform the original data to obtain more 
normal-like distributions. In many cases this will suffice.
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As an example, consider chemical profiling of amphetamine in which peak 
areas of 28 pre-selected impurity compounds are monitored in chromatographic 
output. The monitoring of these impurity compounds was agreed on in EC 
financed projects [31, 32], and the data is of Type 1. In subchapter 6.2.4 a data 
set with peak areas in 744 samples of seized amphetamine powder was used to 
illustrate different methods of data pre-processing on one of the analytes. This 
data set will be used in the description of other methods for data analysis.

In the following (and in the description of other methods for data analysis), this 
data set will be used, however with some slight modifications. Six of the impu-
rity compounds are Ketoxime 1, Ketoxime 2, DPIA 1, DPIA 2, DPIMA1 and 
DPIMA2. These constitute three pairs (Ketoxime 1 & Ketoxime 2; DPIA 1 & 
DPIA 2; DPIMA 1 & DPIMA 2) and within each pair the correlation between the 
two compounds is very high. Therefore, the two compounds in each of these 
three pairs are summed to a new variable, which is named after the common 
name, i.e. the three variables Ketoxime, DPIA and DPIMA are created. Never-
theless, they are still referred to as impurity compounds in the descriptions 
below. Hence, we will refer to 25 impurity compounds.

14 of the 25 impurity compound peak areas show variation that is either close to 
normal in original scale or becomes close to normal upon having applied square 
root or fourth root transforms (see subchapter 6.2.4). These compounds and 
which transformations were used are presented in Table 7.1.

Now, besides these compounds assume there is also information about the 
country of origin for each of the 744 samples. The countries are The Nether-
lands, Sweden, Lithuania, Poland and ‘Other’ which means another country than 
those four, i.e. in total five. Note that the attribution of countries is completely 
artificial and has no correspondence with the original data. It has been made to 
provide a simple example of how LDA works.

We would now investigate whether a linear discriminant analysis can be carried 
out with which we could classify new samples to their countries of origin. A 
linear discriminant is a linear combination of the used variables (compounds). 
The number of linear discriminants that can be found are at most the number of 
classes (here country categories) minus 1, i.e. in total four.

Table 7.1:	 14 of the impurity compounds that in original scale or upon data 
transformation shows normal variation

Impurity compound Transformation
of peak areas

N-Acetylamphetamine
N-Formylamphetamine
Benzylamphetamine
DPPAa fourth root
DPIAb

DPIMAc fourth root
Naphthalene 1
Naphthalene 2 fourth root
N-Benzoylamphetamine fourth root
2-Oxod square root
2,6-Dimethyl-3,5-diphenylpyridine fourth root
2,4-Dimetyl-3,5-diphenylpyridine fourth root
Pyridine 7 and 14
2,6-Diphenyl-3,4-dimethylpyridine square root

a 1,3-Diphenyl-2-propylamine

b N,N-di-(β-phenylisopropyl)amine

c N,N-di-(β -phenylisopropyl)methylamine

d 2-Oxo-1-phenyl-2-(β-phenyl-isopropylamino)ethane

Hence, in this example, there could be at most four linear discriminants and 
each is of the mathematical form

LDi  =	 a1i × (peak area of N-Acetylamphetamine)  

+ 	 a2i × (peak area of N-Formylamphetamine) 

+ 	 a3i × (peak area of Benzylamphetamine) 

+ 	 a4i × (fourth root of peak area of DPPA) 

+	… 

+ 	 a14i × (square root of peak area of 2,6-Diphenyl-3,4-di-
              methylpyridine)
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where the coefficients a1i , a2i , … , a14i  for i = 1, 2, 3, 4 are determined such that 
the set of linear discriminants (their values) discriminates as well as possible 
between the groups defined by the five country categories.

Using linear discriminants to classify new observations is done by so-called 
‘Bayesian updating’. When carrying out LDA so-called prior probabilities are 
attached for the different classes. The default setting of these probabilities is 
using the proportions of each class in the training data set. For a new sample 
the so-called posterior probabilities of the classes are calculated by updating 
the prior probabilities with the information contained in the calculated discrim-
inants. The sample may then be classified to the class that has the highest 
‘posterior probability’, or other decision rules may be applied.

As an illustration, five new samples are to be classified with respect to their 
country of origin by using the LDA analysis. In the data set of 744 samples (the 
training data) the proportions of the five country categories are: The Nether-
lands (36%), Sweden (24%), Lithuania (18%), Poland (20%), Other (2%). Using 
the default settings of the LDA, the prior probability for a sample to have The 
Netherlands as origin is 0.36, the prior probability for a sample to have Sweden 
as origin is 0.24 etc. In Table 7.2, computed posterior probabilities of the country 
categories for each of the five new samples are shown.

Table 7.2:	 Computed posterior probabilities of each of the five country categories 
(The Netherlands, Sweden, Lithuania, Poland and Other) for each of 
five new samples that need to be classified

New
sample

The 
Nether-
lands

Sweden Lithuania Poland Other

1 0.737 7×10-7 0.243 0.020 7×10-7

2 2×10-7 0.9999 5×10-12 8×10-5 3×10-6

3 0.448 2×10-8 0.542 0.009 8×10-7

4 0.455 0.009 0.007 0.529 2×10-5

5 2×10-4 7×10-6 5×10-6 1×10-4 0.9997

For sample 2 and 5 it can be seen from Table 7.2 that the posterior probabili-
ties are very high for Sweden (sample 2) and Other (sample 5). For these two 
samples the classification to country category can be said to be unambiguous. 

In contrast, for samples 3 and 4 the two highest posterior probabilities are not 
that far from each other in value and hence using the maximum posterior prob-
ability as a decision rule may cause misclassification. Note that the sum of 
probabilities of each sample is always 1.

Logistic regression

Logistic regression is used to predict the value of a binary response variable, 
values of which are typically expressed as 0 or 1. For given values of the explan-
atory variables or predictors, logistic regression is used to establish the proba-
bility of the response variable taking the value of 1. This is achieved by taking 
a linear combination of the predictors, with an additional transformation of this 
combination to ‘force’ it to the 0-1 range. This method is useful for producing a 
statistical classifier for purposes of e.g. identifying compounds.

Logistic regression can be said to be a more generally usable tool for classifi-
cation than LDA. The reason for this is that the predictors need not be normally 
distributed, or even close, whereas for LDA they need to be. Besides, if normally 
distributed features are used as predictors in a classification problem with two 
classes, it is usually possible to obtain similar results with logistic regression as 
with LDA. Logistic regression can also be extended for use with more than two 
categories. The method is then often referred to as ‘multinomial’ or ‘polytomic’ 
(logistic) regression. The word ‘logistic’ stems from the fact that the transforma-
tion of the linear combination to obtain a value that is in the 0-1 range in most 
cases is the logistic function.

As an example, we return to the data with impurity profiling of samples of seized 
amphetamine powder used in the previous example of LDA. In this data we arti-
ficially attributed countries of origin to the sample. Assume now that we are only 
interested in whether the sample originates from The Netherlands or not. This 
means that we have a response variable with value 1 if the sample originates 
from The Netherlands and 0 otherwise. We can now use the peak areas of the 
impurity compounds listed in Table 7.1 as predictors. As stated, with logistic 
regression it is not necessary to transform any of these peak areas since there 
is no requirement of normal distributed predictors. However, we will use the 
transforms as given in Table 7.1 since these transforms also reduce a possible 
imbalance in the data with values largely deviating from the core of the data set 
(cf. subchapter 6).

7  DATA ANALYSIS 7  DATA ANALYSIS



44	 Issue No. 001 	 Ref code: DWG-CFC-001 Ref code: DWG-CFC-001 	 Issue No. 001 	  45

Using the logistic function as transformation of the linear combination, we are 
fitting the model 

where  stands for the probability that a sample originates from The Netherlands 
and ‘linear combination’ is of the form

c0

+ c1× (peak area of N-Acetylamphetamine) 

+ c2 × (peak area of N-Formylamphetamine)

+ c3 × (peak area of Benzylamphetamine)

+ c4 × (fourth root of peak area of DPPA) 

+….. 

+ c14 × (square root of peak area of 2,6-Diphenyl-3,4-dimethylpyridine)

where the coefficients c0, c1, c2, …, c14 are constants that will be estimated 
when carrying out the logistic regression analysis. Note that in contrast with the 
linear combinations in LDA there is a baseline constant c0 which is common for 
regression models in general. This prevents forcing a model that would state 
that if every predictor is zero (here that none of the compounds are present in 
the sample) then the probability must be ½ (which may not be the case).

With these coefficients estimates it is possible to predict the probability that a 
new sample originates from The Netherlands, and if that probability exceeds a 
pre-defined threshold the sample is classified as such. A threshold is not trivially 
set, and it is not customary to set it to 0.5. Rather a clearly higher value is used 
(e.g. 0.7) since the risk of misclassification might otherwise be too large. See 
further subchapter 8 about method validation. 

Now carrying out the logistic regression analysis on the 744 sample of seized 
amphetamine powder leads to the following estimated linear combination:

–2.54

+ 0.0086 × (peak area of N-Acetylamphetamine) 

– 0.0419 × (peak area of N-Formylamphetamine)

+ 0.0237 × (peak area of Benzylamphetamine)

+ 0.0002 × (fourth root of peak area of DPPA)

+ 0.0378 × (peak area of DPIA)

– 0.9833 × (fourth root of peak area of DPIMA)

– 0.0377 × (peak area of Naphthalene 1)

+ 0.1747 × (fourth root of peak area of Naphthalene 2)

– 0.2956 × (fourth root of peak area of Benzoylamphetamine)

+ 0.2827 × (square root of peak area of 2-Oxo)

– 0.1863 × (fourth root of peak area of 2,6-Dimethyl-3,5-diphenylpyridine)

+ 1.2977 × (fourth root of peak area of 2,4-Dimethyl-3,5-diphenylpyridine)

+ 0.1871 × (fourth root of peak area of Pyridine 7 and 14) 

– 1.7529 × (fourth root of peak area of 2,6-Dimethyl-3,5-diphenylpyridine)

A difference compared to LDA is that the estimated coefficients of this linear 
combination have a straightforward qualitative interpretation. Since the logistic 
transformation is monotonic, an interpretation of a coefficient with a positive 
value is that the probability of the sample originating from The Netherlands 
increases when the corresponding predictor increases. Similarly, an interpre-
tation of a coefficient with a negative value is that the probability of the sample 
originating from The Netherland decreases when the corresponding predictor 
increases.

Hence, if any (or several) of the peak areas (transformed or not) of N-Acetyl-
amphetamine, Benzyl-amphetamine, DPPA, DPIA, Naphthalene 2, 2-Oxo, 
2,4-Dimethyl-3,5-diphenylpyridine and Pyridine 7 and 14 is larger in one sample 
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we will use the transforms as given in Table 7.1 since these transforms also reduce a 
possible imbalance in the data with values largely deviating from the core of the data set 
(cf. subchapter 6). 

Using the logistic function as transformation of the linear combination, we are fitting the 
model  
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where 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�The Netherlands� stands for the probability that a sample originates from 
The Netherlands and ‘linear combination’ is of the form 

c0 
+ c1× (peak area of N-Acetylamphetamine)  
+ c2 × (peak area of N-Formylamphetamine) 
+ c3 × (peak area of Benzylamphetamine) 
+ c4 × (fourth root of peak area of DPPA)  
+…..  
+ c14 × (square root of peak area of 2-6-Diphenyl-3-4-dimethylpyridine) 

where the coefficients c0, c1, c2, …, c14 are constants that will be estimated when carrying 
out the logistic regression analysis. Note that in contrast with the linear combinations in 
LDA there is a baseline constant c0 which is common for regression models in general. 
This prevents forcing a model that would state that if every predictor is zero (here that 
none of the compounds are present in the sample) then the probability must be ½ (which 
may not be the case). 

With these coefficients estimates it is possible to predict the probability that a new sample 
originates from The Netherlands, and if that probability exceeds a pre-defined threshold 
the sample is classified as such. A threshold is not trivially set, and it is not customary to 
set it to 0.5. Rather a clearly higher value is used (e.g. 0.7) since the risk of 
misclassification might otherwise be too large. See further subchapter 8 about method 
validation.  
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compared to another sample, while the rest of the peak areas are about the 
same, the former sample has a higher probability of originating from The Neth-
erlands than the latter sample.

If any (or several) of the peak areas (transformed or not) of N-Formylamphet-
amine, DPIMA, Naphthalene 1, Benzoylamphetamine, 2,6-Dimethyl-3,5-di-
phenylpyridine and 2,6-Dimethyl-3,5-diphenylpyridine is larger in one sample 
compared to another sample, while the rest of the peak areas are about the 
same, the former sample has a lower probability of originating from The Nether-
lands than the latter sample.

Now, consider again the five new samples that were classified with LDA. There, 
one sample (no. 1) was attributed to The Netherlands as its origin while the rest 
were attributed to other countries. We can now use the formula for Prob (The 
Netherlands) with the estimated linear combination and predict the probability 
for each sample to originate from The Netherlands. In Table 7.3 these predicted 
probabilities for all five samples are given.

Table 7.3:	 Predicted probabilities of five new samples to originate 
from The Netherlands

New sample Predicted probability of sample 
originating from The Netherlands

1 0.625
2 0.057
3 0.604
4 0.335
5 0.187

If we define a decision rule as ‘the predicted probability must exceed 0.7’, then 
none of the samples will be attributed to The Netherlands as their origin. Never-
theless, we can see in Table 7.3 that the sample with the highest predicted 
probability of originating from The Netherlands is sample 1. This sample was 
also attributed to The Netherlands in the previous LDA analysis.

Partial least squares

Partial least squares regression (PLS-R) is a multivariate method that models 
the relation between two blocks of variables commonly referred to as X (predic-
tors) and Y (responses). Simplified, the procedure can be described as a 
simultaneous calculation of PCs of each matrix under certain constraints. The 
calculated PCs for X and Y are adjusted to maximize the covariance between 
them. Therefore, the directions of the obtained PCs are somewhat different to 
those in ordinary PCA. Given values for X, the Y values are obtained by first 
transforming the X values to the corresponding PCs, these are transformed to 
the PCs of Y by ordinary least squares regression and finally values of Y are 
obtained by transforming back from the PC space. PLS is quite general and 
is especially useful for when the predictors are highly collinear or when there 
are more predictors than observations. Partial Least Squares - Discriminant 
Analysis (PLS-DA) is a special case of this where the Y matrix is categorical, 
representing discrete classes. Now, the PCs for the X matrix are adjusted to 
maximize the covariance between the components and the classes indicated 
by the Y matrix.

7.2	 Quantification: regression techniques

Ordinary least squares regression (OLS-R), also: simple linear regression, is 
a traditional method for using numerical variables called predictors to predict 
the value of another numerical variable called the response. It is appropriate 
for purposes of quantification and it accomplishes this by finding an optimal 
linear transformation of the predictors to predict the value of the response vari-
able. OLS-R has many applications in chemical analysis, and is not (like other 
methods) connected to a typical forensic question.

An example is the following:

Khat is a flowering plant (Catha edulis in Latin) that is native in East Africa and 
on the Arabian Peninsula. It contains the stimulant cathinone, and is chewed 
to get an inebriation effect. It is classified by WHO as a drug of abuse and as 
an illicit drug in several Western World countries. Khat is gathered in bundles 
of sprigs where a bunch is considered to be of “chewing size”. A number of 
bundles historically comprising a daily dose are then covered with a banana leaf 
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(partly to conserve some of their freshness), and called a ‘marduuf’ 1. Consign-
ments of such marduufs are then smuggled to users living in the Western World 
but practicing drug culture from their home countries.

When a consignment for delivery is discovered and confiscated by the customs 
there are issues with estimating the quantity of the sprigs (since the banana 
leaves are not classified). The most accurate estimate would be to remove 
all banana leaves and weigh all bunches of sprigs together, but evidently this 
takes a lot of both time and effort. One idea is therefore to investigate whether 
a deduction factor can be determined and used on the weight of the whole 
consignment (i.e. including the banana leaves).

In a study 260 marduufs were selected, and their gross weights and wrapping 
weights were registered. In Figure 7.1 a scatter plot of wrapping weights against 
gross weights are shown.

Figure 7.1	 Scatter plot of wrapping weights against gross weights 
for 260 selected marduufs with khat

1	  Marduuf is a street market unit for Khat; consisting two bunches of Khat leaves

Although the plot in Figure 7.1 is rather noisy, there is clearly a correlation 
between the wrapping weight and the gross weight. If a factor for deduction of 
the wrapping weight should be found, this would correspond with the slope of a 
fitted line to the scatter plot. However, the data is scattered around a point that 
is far from the origin of the coordinate system and should we force such a line to 
go through the point (0;0) it would not fit well with the points. Hence, to fit a line 
we must include some kind of offset parameter. The statistical model for these 
data is:

Wrapping weight = intercept + slope × Gross weight + deviation (grams)

where the parameter intercept is the offset parameter = the value on the y-axis 
where the line will cross, the parameter slope is the slope of the line and devi-
ation is the vertical deviation from a point to the line (there are both positive 
and negative deviations). This is referred to as a (simple) linear regression 
model where Wrapping weight is the ‘response variable’ and Gross weight is 
the ‘explanatory variable’ or ‘predictor’ (cf. the description of logistic regression 
above).

Now, using the method of ordinary least squares a (regression) line is fitted with 
intercept estimated by – 9.7 and slope by 0.43. Hence the fitted line can be 
written as:

Wrapping weight = –9.7 + 0.43 × Gross weight (grams).

Note that the term ‘deviation’ in the model is there to explain the position of 
a single point, on average this deviation should be zero. The regression line 
represents the expected (or mean) relationship between Wrapping weight and 
Gross weight, but is also at the same time the best prediction of the Wrapping 
weight.

In Figure 7.2 the fitted line is added to the previous scatter plot.
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Figure 7.2	 Scatter plot of wrapping weights against gross weights 
for 260 selected marduufs with khat, together with a 
fitted regression line with intercept –9.7 and slope 0.43

Now, for a new consignment of marduufs the predicted weight of the sprigs (the 
Net weight) can be predicted using the following formula:

predicted Net weight = Gross weight – predicted Wrapping weight =

= Gross weight – (–9.7 + 0.43 × Gross weight) =

= 0.57 × Gross weight + 9.7 (grams).

This formula is not the same as just applying a deduction factor to the gross 
weight, but for consignments with large weights (several kilograms) the addition 
of 9.7 grams is negligible and might as well be omitted.

It should be said that even if the fitted regression line captures the assumed 
background relationship between Wrapping weight and Gross weight, many 
points are quite far from the line. This might mean that not all variation in the 
data has been captured by the model. When applying OLS to these kinds of 

data, a measure of the fit is the so-called ‘coefficient of determination’. This is a 
measure between 0 and 1, where 0 means that no variation has been explained 
by the regression model, and 1 means that all variation has been explained. 
Values above 0.8 are often considered as sufficiently high, but it depends on 
the kind of application the fitted model shall be used for. For this fitted model 
the coefficient of variation is 0.73, which may be considered too low when the 
purpose is to get an accurate prediction of the Net weight of a consignment.

7.3	 Comparison by dissimilarity-based methods

In comparison problems, where it is of interest to discover whether samples share 
a common source, different measures of dissimilarity, calculated between pairs 
of samples from numerical variables, can be used to indicate linked samples. 
The prerequisite for this is that the selected dissimilarity measure adequately 
summarises relevant differences between data items. To ensure this, careful 
consideration of the properties of different measures is necessary.

The Euclidean and Manhattan distances are typical examples of what could be 
called ‘classical’ dissimilarity measures. The first of these is the usual ‘straight 
line’ distance between two points in space. The second one, on the other hand, 
corresponds to the distance when travelling along each coordinate axis sepa-
rately. Indeed, the Manhattan distance is sometimes called the ‘taxicab’ metric 
as a reference to the way taxis traverse the grid layout in Manhattan, New York. 
In some literature it is also called ‘city block distance’.

Alternatively, one may consider dissimilarity measures such as the Pearson 
correlation distance and cosine distance. Both of these are, in a sense, 
measures of shape similarity and are quite closely related. The former is based 
on the Pearson correlation coefficient and it measures how well one can recon-
struct one of the vectors using a linear transformation of the other one. In partic-
ular, it ignores any absolute differences in the samples and is only affected by 
differences in relation to the mean and standard deviation calculated over the 
indices of the vectors. In contrast, cosine dissimilarity measures the difference 
in the angles of the two vectors, again ignoring absolute differences. The two 
measures are connected by the fact that Pearson correlation is the cosine simi-
larity of z-score transformed vectors.

In subchapter 7.5 it will be shown how different measures of dissimilarities may 
affect hierarchical clustering analysis (HCA).
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7.4	 Principal component analysis

Principal component analysis (PCA) is a multivariate method that is used to 
simplify interpretation of large data matrices. The procedure involves replace-
ment of original variables with so-called orthogonal principal components (PCs), 
which explain the variation in the different dimensions as efficiently as possible. 
PCA provides a graphical overview of both the samples (by means of ‘scores 
plots’) and variables (by means of ‘loadings plots’) in the database, using only 
a few dimensions. The scores plot makes it possible to identify classes of 
samples, i.e. samples that are similar and dissimilar. Loading plots can be used 
to find variables that are positively or negatively correlated to each other. The 
position of the variables in the loading plot can also be used to explain the posi-
tion of the samples in the scores plot. An advantage of PCA is that it can handle 
co-variation of variables.

As an example, consider again chemical profiling of amphetamine in which peak 
areas of 25 pre-selected impurity compounds are monitored in chromatographic 
output. For the set of 744 samples of seized amphetamine powder (see chapter 
6), we illustrate potential correlations between the peak areas of six of these 
compounds (Ketoxime, N-Acetylamphetamine, 1,2-Diphenylethanone, N-Ben-
zoylamphetamine, 2,6-Dimethyl-3,5-diphenylpyridine and 2,4-Dimethyl-3,5-di-
phenylpyridine). In Figure 7.3 pairwise scatter plots of the peak areas of these 
six substances are shown.

Figure 7.3	 Pairwise scatter plots of peak areas of the six compounds Ketoxime, 
N-Acetylamphetamine, 1,2-Diphenylethanone, N-Benzoylamphet-
amine, 2,6-Dimethyl-3,5-diphenylpyridine and 2,4-Dimethyl-3,5-di-
phenylpyridine obtained from chemical profiling of 744 samples of 
seized amphetamine
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The scatter plots in Figure 7.3 reveal mostly fairly weak pairwise relationships 
between the peak areas of the six compounds. The matrix of pairwise correla-
tion coefficients is shown in Table 7.4. The pairwise correlation coefficient used 
is Pearson’s correlation coefficient which is computed as

where yi
(1) is the observation for compound 1 in sample i, yi

(2) is the observation 
for compound 2 in sample i, and the sample means of these two compound 
values are denoted by  and  respectively.

Table 7.4	 Pairwise correlation coefficients of peak areas of the six 
compounds Ketoxime, N-Acetylamphetamine, 1,2-Dipheny-
lethanone, N-Benzoylamphetamine, 2,6-Dimethyl-3,5-diphen-
ylpyridine and 2,4-Dimethyl-3,5-diphenylpyridine obtained from 
chemical profiling of 744 samples of seized amphetamine
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Ketoxime 1 0.86 0.26 0.67 0.31 0.41
N-Acetyl-
amphetamine 0.86 1 0.50 0.87 0.43 0.51

1,2-Diphenyl-
ethanone

0.26 0.50 1 0.58 0.59 0.28

N-Benzoyl-
amphetamine 0.67 0.87 0.58 1 0.48 0.51

2,6-Dimethyl-
3,5-diphenyl-
pyridine

0.31 0.43 0.59 0.48 1 0.75

2,4-Dimethyl-
3,5-diphenyl-
pyridine

0.41 0.51 0.28 0.51 0.75 1

Note that even if the scatter plots in Figure 7.3 do not indicate strong relation-
ships, the pairwise correlation coefficients between peak areas of Ketoxime and 
N-Acetylamphetamine and between peak areas of N-Acetylamphetamine and 
N-Benzoylamphetamine are both over 0.8.

Principal component analysis (PCA) of the peak areas of the six compounds 
will give as output so-called principal components (PC1, PC2, …), which are six 
linear combinations of the compounds’ peak areas that are independent (orthog-
onal) of each other. The total number of principal components is always the 
same as the total number of variables, but as we shall see later, they decrease 
in importance from the first to the last. In this example the first principal compo-
nent is:

PC1 = 0×(peak area of Ketoxime) + 0.256×(peak area of N-Acetylamphetamine) 
+ 0×(peak area of 1,2-Diphenylethanonen + 0.961×(peak area of N-Benzoylam-
phetamine) + 0×(peak area of  2,6-Dimethyl-3,5-diphenylpyridine) + 0×(peak 
area of 2,4-Dimethyl-3,5-diphenylpyridine) =

= 0.256×(peak area of N-Acetylamphetamine) +  0.961×(peak area of N-Ben-
zoylamphetamine)

The coefficients in front of the compounds’ peak areas are called loadings and 
give some understanding about how the peak area of a specific compound 
affects the principal component. If no scaling pre-processing has been made to 
the data, the loadings cannot be compared with each other. As an example: in 
this first principal component, we can see that it depends only the peak areas 
of N-Acetylamphetamine and N-Benzoylamphetamine, but since no scaling 
pre-processing was done it is not meaningful to compare the two loadings 
(0.256 and 0.961 respectively).

All six principal components are presented in Table 7.5, in which the rows are the 
principal components, the columns are the ‘different compounds’ peak areas, 
and the entry in each cell is the loading on the column compound peak area for 
the principal component of the row.
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The scatter plots in Figure 7.3 reveal mostly fairly weak pairwise relationships between 
the peak areas of the six compounds. The matrix of pairwise correlation coefficients is 
shown in Table 7.4. The pairwise correlation coefficient used is Pearson’s correlation 
coefficient which is computed as 

������������𝐲𝐲���, 𝐲𝐲���� �
∑ �y���� � y����� ∙ �y���� � y���������

�∑ �y���� � y���������� ∙ ∑ �y���� � y����������
 

where yi(1) is the observation for compound 1 in sample i, yi(2) is the observation for 
compound 2 in sample i, and the sample means of these two compound values are 
denoted by 𝑦𝑦���� and 𝑦𝑦���� respectively. 

Table 7.4 Pairwise correlation coefficients of peak areas of the six compounds 
Ketoxime, N-Acetylamphetamine, 1,2-Diphenylethanone, N-
Benzoylamphetamine, 2,6-Dimethyl-3,5-diphenylpyridine and 2,4-
Dimethyl-3,5-diphenylpyridine obtained from chemical profiling of 744 
samples of seized amphetamine 
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Ketoxime 1 0.86 0.26 0.67 0.31 0.41 
N-Acetyl-
amphetamine 0.86 1 0.50 0.87 0.43 0.51 

1,2-Diphenyl-
ethanone 0.26 0.50 1 0.58 0.59 0.28 

N-Benzoyl-
amphetamine 0.67 0.87 0.58 1 0.48 0.51 

2,6-Dimethyl-
3,5-diphenyl-
pyridine 

0.31 0.43 0.59 0.48 1 0.75 

2,4-Dimethyl-
3,5-diphenyl-
pyridine 

0.41 0.51 0.28 0.51 0.75 1 

 
 

Note that even if the scatter plots in Figure 7.3 do not indicate strong relationships, the 
pairwise correlation coefficients between peak areas of Ketoxime and N-
Acetylamphetamine and between peak areas of N-Acetylamphetamine and N-
Benzoylamphetamine are both over 0.8. 

Principal component analysis (PCA) of the peak areas of the six compounds will give as 
output so-called principal components (PC1, PC2, …), which are six linear combinations 
of the compounds’ peak areas that are independent (orthogonal) of each other. The total 
number of principal components is always the same as the total number of variables, but 
as we shall see later, they decrease in importance from the first to the last. In this example 
the first principal component is: 
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Table7.5:	 Loadings for each principal component in a PCA of the peak areas of 
the compounds Ketoxime, N-Acetylamphetamine, 1,2-Diphenyleth-
anone, N-Benzoylamphetamine, 2,6-Dimethyl-3,5-diphenylpyridine 
and 2,4-Dimethyl-3,5-diphenylpyridine in 744 samples of seized 
amphetamine powder
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PC1 0.256 0.961
PC2 0.155 0.725 –0.255 0.193 0.590
PC3 0.135 0.603 –0.318 –0.712
PC4 0.106 0.800 –0.532 0.243
PC5 0.399 –0.501 0.719 –0.265
PC6 0.887 –0.198 0.325 –0.246

To be able to compare the loadings on different compound peak areas the peak 
areas need to be standardized or transformed to z-scores before the principal 
component analysis is carried out. In Table 7.6 loadings are shown for the six 
principal components from a PCA of standardized peak areas from the analyzed 
744 samples of seized amphetamine powder.

Table 7.6:	 Loadings for each principal component in a PCA of standardized 
peak areas of the compounds Ketoxime, N-Acetylamphetamine, 
1,2-Diphenylethanone, N-Benzoylamphetamine, 2,6-Dimethyl-3,5-di-
phenylpyridine and 2,4-Dimethyl-3,5-diphenylpyridine in 744 samples 
of seized amphetamine powder
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PC1 0.397 0.470 0.347 0.461 0.383 0.376
PC2 0.512 0.361 –0.300 0.203 –0.583 –0.370
PC3 0.208 –0.748 –0.167 0.112 0.597
PC4 0.583 0.150 –0.661 0.358 –0.269
PC5 0.172 0.418 –0.434 –0.583 0.518
PC6 0.444 –0.786 0.183 0.306 –0.184 0.157

Note that the loadings in Table 7.6 are completely different from the loadings 
of Table 7.5, and in particular, that peak areas with no loadings in Table 7.4 
can have loadings in Table 7.6. Consider for example the loadings for the first 
principal component (PC1), i.e. the first row of Table 7.6. These can now be 
interpreted as follows.

Assume two different materials for which PC1 values have been computed. 

•	 If the standardized peak area of Ketoxime is K units higher in mate-
rial 1 compared to material 2, while all other standardized peak 
areas are about the same for the two materials, then PC1 will be 
0.397×K units higher for material 1 than for material 2. 

•	 If the standardized peak area of N-Acetylamphetamine is K units 
higher in material 1 compared to material 2, while all other standard-
ized peak areas are about the same for the two materials, then PC1 
will be 0.470×K units higher for material 1 than for material 2.

•	 Similar for the remaining 4 coefficients.

7  DATA ANALYSIS 7  DATA ANALYSIS



58	 Issue No. 001 	 Ref code: DWG-CFC-001 Ref code: DWG-CFC-001 	 Issue No. 001 	  59

Note that a negative loading will have the reverse interpretation. For instance, if 
the standardized peak area of 1,2-Diphenylethanone is K units higher in mate-
rial 1 compared to material 2, while all other standardized peak areas are about 
the same, then PC2 will be 0.300×K units lower than for material 2.

A difference in K units between two standardized peak areas is equivalent to 
a difference in K×s units between the peak areas in original scale, where “s” 
is the standard deviation computed from the set of peak areas for the current 
compound.

Now, the main purpose with PCA is to reduce the number of dimensions for the 
interpretation of the data. Since any of the six compounds can have loadings 
in a principal component, each principal component captures some part of the 
total variation in data. The first principal component always captures the largest 
part of the variation, the second principal component captures the second 
largest part of the variation etc. The idea is that a subset of the principal compo-
nents (the first, the first two, the first three, …) may together capture a suffi-
cient amount of the total variation for drawing conclusions, e.g. about groupings 
in the data. In software for principal component analysis there is an option to 
produce a so-called ‘scree plot’. This is a graph that depicts the amount of varia-
tion (statistical variance) that is captured by each principal component. In Figure 
7.4 a scree plot is shown for the PCA done on the original peak areas of the six 
compounds of the 744 samples of seized amphetamine powder.

Figure 7.4	 Screen plot of the six principal components obtained from 
PCA done on original peak areas of the six compounds 
Ketoxime, N-Acetylamphetamine, 1,2-Diphenylethanone, 
N-Benzoylamphetamine, 2,6-Dimethyl-3,5-diphenylpyridine 
and 2,4-Dimethyl-3,5-diphenylpyridine obtained from chem-
ical profiling of 744 samples of seized amphetamine. The 
bar of each principal component shows the amount of vari-
ance in the data set captured by that component

We can see in Figure 7.4 that the first principal component captures a very large 
part of the variance compared to the other components. This can be interpreted 
as it would suffice to retain the first principal component from the PCA to draw 
conclusions about the data set. In other words, the dimension may be reduced 
from six (as is the number of original variables) to one. However, the scree plot 
based on PCA on non-standardized data may not always give rise to such a 
clear interpretation. In Figure 7.5 is shown the scree plot for the PCA done on 
standardized peak areas (i.e. the loadings of which were given in Table 7.6.
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Figure 7.5	 Screen plot of the six principal components obtained from 
PCA done on standardized peak areas of the six compounds 
Ketoxime, N-Acetylamphetamine, 1,2-Diphenylethanone, 
N-Benzoylamphetamine, 2,6-Dimethyl-3,5-diphenylpyridine 
and 2,4-Dimethyl-3,5-diphenylpyridine obtained from chem-
ical profiling of 744 samples of seized amphetamine. The 
bar of each principal component shows the amount of vari-
ance in the standardized data set captured by that compo-
nent

Compared to the graph in Figure 7.5 we observe that the variances are of a 
much smaller in magnitude. This is so since the data has been standardized 
before PCA was applied, i.e. al variables have standard deviation 1. We can 
also see that the bars for PC2, PC3, …, PC6 are much higher relative to the 
bar for PC1 than was the case in Figure 7.4. From a scree plot for PCA done 
on standardized variables there is an easy to use rule for deciding how many 
principal components should be retained to capture a sufficient amount of the 
total variation for conclusions to be drawn. All principal components capturing 
each a variance at least equal to one should be retained, while the other compo-
nents can be left out from further interpretation. In the graph of Figure 7.5 it can 

be seen that the first two principal components have each a captured variance 
greater than one, while the rest of the components have not. Hence, we should 
retain the first two principal components for further conclusions to be drawn. 
Note that this choice was not obvious from inspection of the scree plot in Figure 
7.4. That plot rather pointed towards retaining only the first principal component.

Once we have decided upon the principal components to be retained, we can 
illustrate with a score plot and a loadings plot. A score plot means a scatter plot 
of the values of the (retained) principal components - named scores. Two-di-
mension scatter plots in which the scores of one principal component is plotted 
against the scores of another principal component are easiest to interpret but 
with today’s graphical tools in software it is also fairly easy to interpret a three-di-
mensional plot, especially if it can be rotated freely. However, it is only mean-
ingful to produce score plots for the principal components retained, but should 
these be more than two then several plots may be needed for drawing useful 
conclusions. 

A scatter plot may reveal previously not known subgroups of the data set shown 
as swarm of points more or less separated from each other. If the data points 
are already grouped (before the PCA is done) this can be indicated in the scatter 
plot by choosing different colors of the points depending on to which group they 
belong. 

In Figure 7.6 is shown a score plot with the scores of principal component 
2 (PC2) against the scores of principal component 1 (PC1) from the PCA of 
standardized peak areas of the six compounds of the 744 samples of seized 
amphetamine powder
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Figure 7.6	 Score plot of principal component 2 (PC2) scores against 
principal component 1 (PC1) scores obtained from PCA done 
on standardized peak areas of the six compounds Ketoxime, 
N-Acetylamphetamine, 1,2-Diphenylethanone, N-Benzo-
ylamphetamine, 2,6-Dimethyl-3,5-diphenylpyridine and 
2,4-Dimethyl-3,5-diphenylpyridine obtained from chemical 
profiling of 744 samples of seized amphetamine

The score plot of Figure 7.6 does not reveal any clear swarms of points indi-
cating groups in the data set. Now, we might be especially interested in the few 
points that deviate from the funnel-shaped pattern of the majority of the points 
in the graph. For each sample in the data set we have information about the 
dry concentration of amphetamine in the powder. If we classify this into the 
classes “below 30%”, “from 30% to 60%” and “above 60%” we can color the 
points according to this classification. In Figure 7.7 such a graph is shown, i.e. 
the same points as plotted in Figure 7.6 are plotted in Figure 7.7, but with colors 
depending on the amphetamine dry concentration class (black: below 30%, red: 
between 30% and 60%; and green: above 60%).

Figure 7.7	 Score plot of principal component 2 (PC2) scores against 
principal component 1 (PC1) scores obtained from PCA done 
on standardized peak areas of the six compounds Ketoxime, 
N-Acetylamphetamine, 1,2-Diphenylethanone, N-Benzo-
ylamphetamine, 2,6-Dimethyl-3,5-diphenylpyridine and 
2,4-Dimethyl-3,5-diphenylpyridine obtained from chemical 
profiling of 744 samples of seized amphetamine. The colors 
and symbols of the points are due to the amphetamine dry 
concentration class to which they belong (black circles: below 
30%; red crosses: from 30% to 60%; green diamonds: above 
60%)

In the plot of Figure 7.7 it can be seen that all points deviating from the general 
funnel-shaped patters are samples with dry concentration of amphetamine above 
60%.It can also been seen that samples with dry concentration of amphetamine 
between 30 % and 60 % tend to have negative scores on PC2 (a majority of the 
red crosses are below PC2 =0).
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7.5.	 Hierarchical cluster analysis (unsupervised classification)

Hierarchical cluster analysis (HCA) is a method for analysing group structure in a 
dataset based on pairwise dissimilarities. HCA starts by assigning each sample 
to its own group or cluster. After this, at each stage based on a user-speci-
fied rule, two closest groups are combined to form a new, bigger cluster. This 
continues until only one cluster remains. This process produces a hierarchy 
of possible clustering solutions that is group assignments for the dataset. This 
hierarchy can be represented as a tree – a so-called dendrogram – that can be 
examined as is to explore the structure of the dataset or cut at certain height 
to provide a specific clustering solution for the dataset. The application of HCA 
requires the user to choose the dissimilarity measure for determining which 
samples are similar as well as so called ‘linkage’ method to determine which 
groups of samples are similar. The first of these depends on what is a useful 
metric for determining similarity between any two samples, the details of which 
were described in section on comparison methods. For the second choice, it is 
important to realise that even if pairwise dissimilarities have been determined 
between samples, this does not uniquely determine how dissimilar any two 
groups of samples are with respect to the used dissimilarity measure. There are 
several methods for assessing group dissimilarity, or linkage, such as single, 
average, complete and Ward’s method linkages. Single linkage means that for 
any group of samples, the distance between the groups is assigned as the 
minimum of the pairwise dissimilarities between the groups. Average linkage 
involves the arithmetic mean of the pairwise dissimilarities and complete linkage 
refers to using the maximum of these dissimilarities. Ward’s method is in a 
sense more complex and is theoretically appropriate only when using Euclidean 
distances. Its basic idea is to minimize the variability within each formed group. 
That is, at each stage the two groups for which merging produces the minimal 
increase in internal variability are combined.

We can illustrate how HCA is applied by again using impurity profiling data from 
the 744 samples of seized amphetamine powder that has been used in several 
previous examples. This time we will use all 25 impurity compounds with no data 
transformation since no general requirements are imposed on the distributional 
properties of the data (as was the case for LDA). What is necessary is that a 
dissimilarity measure exists that can be applied on the data. In this example all 
variables (impurity compounds) are continuously varying, which means that a lot 
of dissimilarity measures can be used. We will compare the clustering outputs 

for the two measures Euclidean distance and Pearson correlation distance (see 
also subchapter 7.3) together with single linkage and average linkage.

The purpose is to obtain knowledge about how many laboratories have produced 
amphetamine for the market during the last 6 months. The dendrogram showing 
the output of an HCA is a tree diagram with its outermost twigs at the bottom and 
the root at the top. However, since we have 744 samples, each of which consti-
tutes one of the outermost twigs, there is not enough space for a figure in this 
document to show such a dendrogram in which all these twigs are discernible. 
Therefore, for illustration purposes, we randomly select 50 of the 744 samples 
and apply HCA to these.

The dendrograms for all four combinations of Euclidean distance/Pearson 
correlation distance and simple linkage/average linkage are shown in Figures 
7.8 - 7.11.
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Figure 7.8	 Dendrogram for the hierarchical clustering of a selection of 50 samples 
from 744 samples of seized amphetamine powder using Euclidean 
distances and single linkage

Figure 7.9	 Dendrogram for the hierarchical clustering of the same selection 
of 50 samples as of Figure 7.8 using Euclidean distances and 
average linkage
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Figure 7.10	 Dendrogram for the hierarchical clustering of the same selection of 50 
samples as of Figures 7.8 and 7.9 using Pearson correlation distances 
and single linkage

Figure 7.11	 Dendrogram for the hierarchical clustering of the same selection of 
50 samples as of Figures 7.8, 7.9 and 7.10 using Pearson correlation 
distances and average linkage

The dendrograms in Figures 7.8 - 7.11 look quite different even if a kind of 
right-skewed tree can be seen in all graphs. In particular, it should be noted that 
the order of the samples on the x-axis is different between the plots. This is so 
since for each method the first pairs that are joined into a cluster depend on the 
dissimilarity measure used and the samples are sorted so that no joining lines 
are crossing each other.
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Now, to deem upon the number of producing laboratories we should in each 
dendrogram start from the top and follow the splitting into clusters as we move 
down vertically (decreasing the distance). At the beginning, the splitting into 
smaller clusters is not frequent with respect to the decrease of the distance, but 
at some point, it suddenly becomes much more frequent. In Figure 7.8 this point 
is about a distance of 4×107. This is illustrated by the red dashed line in Figure 
7.12 below. Above this line there are at most 8 clusters in the dendrogram, 
and hence 8 is a reasonable estimate of the number of laboratories producing 
amphetamine.

Figure 7.12	 Dendrogram shown in Figure 7.8 with an added line at the distance 
where the splitting into smaller clusters become frequent

Reasoning in the same way for the dendrograms in Figures 7.9-7.11 the esti-
mated number of laboratories producing amphetamine is from 8 to 10.

When setting the decision limit to HCA it needs to be validated, i.e. which 
distance (illustrated as red line in Figure 7.12) gives the picture closest to the 
truth of different batches.
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8	 WHICH DATA PRE-PROCESSING AND ANALYSIS TO USE	
	 FOR DIFFERENT KIND OF QUESTIONS?

The question may be asked which data pre-processing and data analysis 
methods are fit to answer our specific forensic questions, namely for identi-
fication, quantification, classification and comparison. This topic is not easily 
covered but some pointers can be given.

With respect to question on identification and classification, usually discriminant 
analyses methods will be used, such as LDA, Logistic Regression or PLS-DA 
as described above. Pre-processing by normalization or standardization usually 
is a sound idea.

With respect to the question about quantification usually regression-based 
methods such as OLS-R can be used.

With respect to comparison-based questions, normalization and/or weighing is 
often beneficial in order to get values on the same scale. Comparison may be 
based on the analysis of dissimilarities between samples.

9	 METHOD VALIDATION

9.1	 Validation of the applied method before going into practice or casework

In order to apply any of the chemometric methods described in casework, they 
should first be validated. Chemometric methods will produce different types of 
results depending on the type of question posed and the results need to be 
evaluated appropriately. For the purpose of identification, classification and 
comparison, the performance of the method can be expressed in terms of error 
rates, such as false positive and false negative rate. These rates express how 
often the method arrives at an erroneous conclusion and they can be assessed 
based on applying the method on test data.

For identification, a false positive means that the method falsely states that a 
substance is present, while false negative means that the method fails in iden-
tifying a present substance. For classification, a false positive corresponds to 
falsely concluding an item belonging to a class and a false negative is a failure 
to conclude class membership. For comparison, a false positive means errone-
ously concluding that two items are connected, while a false negative means 
failure to connect two items. Performance of identification and comparison 
system typically take place through Receiver Operating Characteristic (ROC) 
curves, see chapter 9.2. Performance of classification systems are often based 
on error rates such as will be described in chapter 9.3.

For quantification, like the determination of the concentration of the effective 
substance in a sample, statistical models can be produced to predict quan-
tities from given input variables. A simple way to evaluate such models is by 
assessing a combined measurement uncertainty that covers the inhomogeneity 
of the sample as well as variation coming from the sample preparation and 
measurement process. This can be done by calculating the bias and standard 
deviation of the residuals from the prediction given by the statistical model.

In cases of e.g. comparison or quantification, the selected chemometric method 
needs a prior training stage. In practice, the dataset available may be divided into 
a training and a testing datasets. As a rule of thumb, 80% of the data can be used 
as training data and 20% for testing data. The choice of the training set should 
encompass the whole variety of the data (samples). It is important that data 
covers the normally observed variation and that the data is from samples with 
prior knowledge. This kind of data is needed for training and testing datasets.
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9.2	 ROC curves

When a chemometric method depends on the selection of a decision threshold, 
Receiver Operating Characteristic (ROC) curves can be used to evaluate the 
overall performance of the method. A specific decision threshold can be deter-
mined by examining false positive and false negative rate curves plotted against 
possible thresholds in order to choose a threshold that offers a desired level of 
performance for that method.

9.2.1	 How to create ROC curves?

An illustration of a false positive and a false negative rate curve and the corre-
sponding ROC curve is given in Figure 9.1. Suppose that there is a classification 
system where a higher outcome makes it more plausible that the answer to the 
question (e.g. two tablets are made with the same type of tableting machine) is 
positive. Then for each possible outcome s of the system it is determined what 
the fraction of outcomes in the test set for which the real answer is positive and 
for which the outcome of the system is <s, this is the false negative rate. The 
same can be done for the part of the test set that in reality is negative, but has 
an outcome of the system that is >s. This is the false positive rate. In the ROC 
curve, the true positive rate (=1-false negative rate) is plotted against the false 
positive rate. The Area Under Curve (AUC) can be used as a metric for method 
performance.

Figure 9.1. 	 An illustration of a false positive and a false negative rate curve 
(with the threshold of 1.01 corresponds to 5% false positive rate 
for identifying pairs belonging to the same class), and the corre-
sponding ROC curve. These are based on pairwise Euclidean 
distances over the so-called ‘iris’ dataset available with e.g. the 
base package of the R programming language.

9.2.2	 What information can be taken from ROC curves?

ROC curves depict the performance of systems in which a choice is made between 
two possible scenarios, for example whether a substance is identified, or whether 
two samples are from the same source or not. Systems like these are usually 
based on the determination of similarity or distance measures, and in the case 
of comparisons, the test data set is used to gather these similarities/distances 
between samples of the same source and samples of different sources. On the 
basis of these distances, performance of this system is expressed by (FP/FN & 
TP/TN) a ROC curve, as shown in Figure 9.1. This curve presents the proportion 
of true positives as a function of the proportion of false positives and illustrates the 
performance of the system. The closer the curve is to the upper left corner, the 
better the performance of chemometric method is at predicting correctly whether 
two samples come from the same source or not. A diagonal curve would imply that 
the chemometric method adds no information and predictions based on it would 
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be as good as random guessing. The selection of a threshold always involves a 
tradeoff between false positive and false negative rates.

9.3	 Performance of classification systems: confusion matrices

When the chemometric method involves classification into more than 2 classes, 
ROC curves are typically not applicable as such for performance evaluation of 
the method. In this case the method can be readily evaluated using confusion 
matrices, overall accuracy or so-called one-versus-all error rates.

A confusion matrix is a cross-tabulation of the predictions of the classification 
method against true classes. In Table 9.1, an example is given using the iris 
dataset and classes given by linear discriminant analysis. The rows corre-
spond to the predictions of the algorithm while the columns correspond to the 
true classes. The diagonal of the matrix tells how many times the predicted 
class matched the true class while off diagonal values give different errors. For 
example, the first row tells how many times ‘setosa’, ‘versicolor’ and ‘virginica’ 
classes, respectively, were predicted as belonging to the ‘setosa’ class. Here, 
no mistakes were made, suggesting good separation between ‘setosa’ and the 
other classes. On the second row it can be seen that one ‘virginica’ class sample 
was predicted to belong to ‘versicolor’ class and, on the third row, that two 
‘versicolor’ class samples were predicted as belonging to the ‘virginica’ class. 
This suggests that the ‘versicolor’ and ‘virginica’ classes are not completely 
separable by the algorithm. A confusion matrix can easily be extended to any 
number of classes.

Table 9.1:	 Confusion matrix based on classification results on the iris-
dataset using linear discriminant analysis

setosa versicolor virginica
setosa 50 0 0
versicolor 0 48 1
virginica 0 2 49

When there are more than two classes, there is no obvious meaning to terms 
such as ‘positive’ or ‘negative’ cases and as such it makes no sense to speak 
of false positives and false negatives. However, it is still possible to speak of 

accuracy in terms of how many times the prediction made by the classifica-
tion method was correct. Continuing the example using iris dataset with linear 
discriminant analysis, the accuracy of the algorithm could be calculated as the 
sum of the diagonal element (50 + 48 + 49 = 147) divided by the number of total 
cases (150) resulting in the accuracy of 147 / 150 = 0.98. That is, the algorithm 
has 98% accuracy and, on this dataset, made the wrong classification 2% of 
the time.

It is possible to use similar methods as with binary classification with multiple 
classes by considering one class at the time. In this approach each class in turn 
is considered to be the ‘positive’ class while all the other classes are considered 
‘negative’, allowing calculation of, for example, false positive and negative rates 
from the perspective of each class separately. The results for the iris dataset are 
given in Table 9.2. Here each row corresponds to the class that is considered 
to represent the ‘positive’ case in that case. For the ‘setosa’ class, no errors are 
made. For the ‘versicolor’ class, the false positive rate (FPR) is 0.01, telling that 
1% of all non-versicolor samples were falsely predicted to be ‘versicolor’, and 
the false negative rate (FNR) is 0.04 indicating that 4% of all versicolor samples 
were wrongly classified into some other class. For the class ‘virginica’, we see 
that the corresponding error rates are 2% for both FPR and FNR.

Table 9.2:	 One-vs-all false positive and false negative rates for each class 
in the iris dataset using linear discriminant analysis

Class FPR FNR
setosa 0 0
versicolor 0.01 0.04
virginica 0.02 0.02
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10	 ASSESSMENT / INTERPRETATION OF RESULTS

Whenever the methods that have been developed are applied in practice / 
casework, the question may be asked: “How should the assessment and inter-
pretation of the chemometric results take place?”

The assessment may take place on two levels, as described below, 
as well as in article 3 [3].

The first level is an operational assessment that evaluates the performance 
of the chemometric method (operational level). With the given relevant perfor-
mance criteria, identification, classification or comparison may take place, in 
order to make a decision about samples being from a certain category or not. 
These predefined values may be taken from various points of view, e.g. they are 
fixed by the law, derived by scientific arguments, described in the literature or 
agreed upon with the ‘customer’. In the latter case they may change according 
to the needs of the customer (e.g. police intelligence may ask for less restrictive 
values than the court). 

The second level is a chemical assessment of the chemometric result. Given 
the original chemical data, the forensic chemist evaluates whether the chemo-
metric results make sense according to the chemical properties, and as such 
functions as a ‘safety net’.

In the case that a decision criteria is used that is based on a threshold value 
– accepting a certain false positive and false negative rate - reporting might 
take place in terms of “based on the similarity value between the samples, 
and the chemical assessment of the forensic chemist, it is concluded that they 
are from the same batch”, or similar alternatives. The communication can be 
given straight, comparable to a technical report, where a substance is identified 
according to given criteria. 

Depending on the kind of question asked, for example when answering the 
question requires evaluative reporting, the interpretation may need further steps 
like expressing a likelihood ratio. The ChemoRe software is not designed to 
directly express results for evaluative reporting. There are other tools like SaiLR 
[33] that have been designed for this, so further details on expression an eval-
uative interpretation and communication of these types of results are out of the 
scope of this guideline.

11	 EXAMPLES OF CHEMOMETRIC METHODS USED IN		
	 FORENSIC CHEMISTRY RELATED TO CASEWORK OF
	 ILLICIT DRUGS

In Chapter 3 the forensic workflow and the relation between different phases 
in forensic casework involving illicit drugs is explained. Herein it is described 
where chemometric methods are located. This chapter describes by using 
three examples how chemometrics may be applied. The examples cover Type 
1 and Type 2 data (low- and high dimensional), which are used for classifica-
tion, comparison, identification, and quantification. For all examples a stepwise 
description will be given of

•	 The forensic question under consideration

•	 The available background data for training and testing purposes

•	 The data pre-processing taking place

•	 The chemometric analysis involved

•	 The performance of the procedure given the test data

The data pre-processing and analysis has been performed by applying the 
ChemRe software from that the relevant results are visualised and exported.

11.1	 Example 1. XTC tablets: case-to-case comparison by external 
	 characteristics

Case history

In police operation some XTC tablets were seized during a police investigation 
in addition to a tableting machine. The police were interested in whether the 
seized tablets and tablets seized earlier were made using this machine. 
Tablets, as final products, can be characterized and linked to a certain type of 
tableting machine by their physical dimensions [34]. 
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Forensic Question

The following forensic question has to be answered: “Are the seized tablets 
from the same (or similar) tabletting machine?”

Selection of Parameters

The forensic laboratory identified MDMA in the seized tablets by routine analyt-
ical methods and decided to use several physical parameters, namely diameter, 
thickness and weight of the XTC tablets for chemometric evaluation. This data 
is relevant when the forensic laboratory is answering to the question whether 
the seized tablets were stamped with the seized or a similar tableting machine 
or not. A similar tableting machine would mean a machine that has comparable 
molds and punches as the seized machine. 

Classification of Parameters

Example 1 contains Type 1 data with a training set. Data pre-processing (trans-
formation) and data analysis are performed to answer a case to case compar-
ison question.

Training and Test Data

The origin of the data used in this example is the CHAMP-project database [13, 
32] where XTC- tablets are grouped in batches (160 batches in total). From this 
database, measurements corresponding to 2 batches were removed to serve as 
the origin of the seized items while the remaining 158 batches in the database 
were split into training and test datasets with 80% and 20% of the data included 
in each set respectively. The two removed batches were further divided in four 
separate groups that represent individual batches to serve as simulated case 
data.

The physical measurements of the tablets are presented in Table 11.1. For illus-
tration purposes, information about color and logo of the tablets is included 
additionally (Figure 11.1. Smiley tablet).

Table 11.1:	 Physical measurements (in millimeters and milligrams) and 
additional information on 4 batches of ecstasy tablets. Here 
Sample ID is a code used to identify each tablet. Prefix ‘S’ 
refers to tablets that are from the seized machine while prefix 
‘Q’ refers to tablets found later, that is ‘questioned’ tablets

Sample 
ID

Batch Diameter Thickness Weight Logo Color

S1 1 8,1 3,5 198 Smiley Yellow
S2 1 8 3,5 199 Smiley Yellow
Q1 2 8 3,4 198 Smiley Yellow
Q2 2 8,1 3,5 196 Smiley Yellow
Q3 3 8 3,5 198 Smiley Red
Q4 3 8 3,5 196 Smiley Red
Q5 4 9,1 3,6 301 Smiley Yellow
Q6 4 9 3,5 291 Smiley Yellow

Figure 11.1	 Example logo (smiley) on a seized ecstasy tablet
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Data import 

After removing the two batches determined as origins of the requested tablets, 
the training dataset composed of 80% of the remaining 158 batches was 
imported into the ChemoRe software in form of a *.csv file (Figure 11.2).

Figure 11.2	 Data import of physical parameters of the seized tablets 
	 (type 1, numeric)

Data pre-processing

As the variables of the data were measured on different scales it was neces-
sary to transform them to z-scores (Figure 11.3). This required calculating the 
means and standard deviations of each variable. The z-scores are obtained by 
subtraction of the mean and division by the standard deviation for each variable 
in the data.

Figure 11.3	 Effect of data pre-processing by standardization 
	 (z-score transformation)
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Chemometrics - Method development

In order to compare the transformed physical parameters of XTC-tablets pair-
wise to each other, a measure of dissimilarity was selected, together with a 
threshold for concluding whether two tablets originate from the same batch. The 
Euclidean distance was chosen for this purpose, though other measures could 
have been used likewise. Euclidean distance as a simple distance measure 
seems to be reasonable for a first attempt. To determine a threshold, the 
measure was evaluated on a test dataset.

The calculated means and standard deviations depend on the observed data 
and therefore are determined on the training dataset, as explained above. For 
this the database reserved for method development (486 tablets) was split 
randomly into a training dataset (80% of the batches; 391 tablets) and a test 
dataset (20% of the batches; 95 tablets).

After transformation of the data, the Euclidean distance was calculated between 
all samples in the test set. The obtained distance values were used to determine 
whether a pair originates from the same source, referred to as a positive case, 
or from different sources, referred to as a negative case. This determination 
is done by comparing the distance value against a chosen threshold (same 
source if the value is below the threshold and different sources if the value is 
above the threshold).

Based on these distances a graph is given showing the false positive rate versus 
the false negative rate. Further the performance of this system is expressed by 
a ROC curve. A decision threshold was determined to achieve an acceptable 
rate of error assisted by both graphs.

Result:

In Figure 11.4 it is shown how the false positive and false negative rates on 
the test database develop as a function of all possible threshold values for the 
dissimilarity of pre-processed variables. The general performance of this method 
for the purpose of comparison can be seen in the ROC curve (Figure 11.5). 
In order to choose a decision threshold, an acceptable error rate needs to be 
chosen. Assisted by Figure 11.4 (fpr and fnr) a 5% false positive rate is deemed 
acceptable, based on the test dataset, the threshold should be set at 0.31 for the 
Euclidean distance. This corresponds to a false negative rate of 17%.

Figure 11.4	 Illustration of the false positive and false negative rates on the test data-
base

Figure 11.5	 ROC curve of the method, depicting the true positive rate as a function 
of the false positive rate
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We turn to the results in the actual case-to-case comparison. In Figure 11.6 
dissimilarity values are shown for all pair-wise comparisons of the tablet batch 
under consideration.

Euclidean distance is below the 0.31 threshold indicate a connection between 
tablets from the seized machine to the questioned tablets seized later on. 
Whether a Euclidean distance above the 0.31 threshold does not indicate such 
a link.

From here we can see that tablets from the seized machine, titled S1 and S2 in 
the Figure, are indicated to have the same source as questioned tablets Q1-4, 
whereas according to the Euclidean distance the questioned tablets Q5 and 
Q6 are indicated to have a different source. As the seized tablets are colored 
yellow but tablets Q3 and Q4 are colored red, it seems likely that the production 
batch of these tablets was different, even if the tableting machine used was 
the same. Additionally, tablets Q5 and Q6 share the color with tablets S1-2, but 
have different dimensions. It is possible they are made from same raw material, 
but using different tableting machines.

 
Figure 11.6	 Dissimilarity values for all pair-wise comparisons of the tablet batches 

under consideration considering a threshold value of 0.31

Note that there is a possibility of misclassification when two similar tableting 
machines are used independently. This can be taken into account when inter-
preting the results in a forensic report by a statement such as: “the tablets are 
made with the same or a similar machine”. Provided there are prescribed limits 
for the rates of misclassification, the report can be considered as factual. The 
meaning of the statement is that the Euclidean distance between the tablets is 
below the chosen threshold. If no limits are prescribed it may be more advisable 
to write an evaluative report.
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11.2	 Example 2. Amphetamine: case-to-case and database comparison

Case history

An investigation of an amphetamine distribution network was performed in a 
medium size town where an individual was suspected to act as a local sales 
person and 4 amphetamine samples were recovered from his apartment. 
Following this, several seizures were made within a short period of time from 
various users resulting in 7 amphetamine samples. Additionally, during the 
same time frame, a package containing a further amphetamine sample was 
found by a hiker in a nearby forest.

Forensic Question

Now, the investigative police had two questions. Firstly, the police wanted to 
determine whether the samples found from users had the same source as the 
samples confiscated from the suspect’s apartment, amounting to a case-to-
case comparison. Secondly, the police wished to know if the sample found by 
the hiker was related to amphetamine seen earlier in the area, including what 
was found at the suspect’s home, constituting a database comparison.

Selection of Parameters

Profiling analysis was done according to the questions presented by the inves-
tigative police. Amphetamine can be produced by several synthetic routes [4]. 
The most common routes used are the Leuckart method, Reductive amination 
and the Nitrostyrene method. The different synthetic routes produce different 
chemical impurities to the final product and need to be identified accordingly. 
A chemical profiling analysis was performed using the harmonized profiling 
method (European Harmonized Method for the Profiling of Amphetamine, 
EHMPA) that is based on the analysis of chemical impurities originating from 
synthetic process [31]. The chemical analysis was done from homogenized 
samples by a GC-MS instrument after sample pre-processing. An example 
chromatogram of a GC-MS measurement is presented in Figure 11.7, the exact 
analytical method is described in literature [35-37]. A segment of the raw data of 
the measured impurities is presented in Table 11.2 and contains the integrated 
peak areas of 26 target compounds (impurities).

Figure 11.7	 Chromatogram of amphetamine data analyzed by GC-MS.

Table 11.2:	 Example of the raw data (peak areas) of amphetamine profiling 
analysis. The data of the example is available upon request

Sample 1 Sample 2 ... Sample 13
V1b 4092 186233 400 *
V2 200 a 200 a 200 a

V3 77351 171272 4704 
V4 1368282 1126129 18314 
V5 200 a 55490 200 a

V6 2671 10950 200 a 
V7 19103 94993 200 a

V8 57915 428840 4549 
V9 81117 331794 200 
... ...  ... ...
V26  259602  2155433  33555

a.	 Value of 200 is added to replace a missing value or a value which is 	
	 under 1% of the measured peak area of internal standard.
b.	 Variables V1 and V10 are sum values of two isomers
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Classification of Parameters

Example 2 contains Type 1 data without a training set; the data transformation 
(pre-processing) and data analysis are performed to answer comparison and 
clustering questions.

Training and Testing Data

The raw data presented is an example of Type 1 data, consisting of a limited 
number of peaks. In this example data was extracted from the amphetamine 
profiling database of the Finnish National Bureau of Investigation - Forensic 
Laboratory, for the purpose of training and testing a comparison method. The 
data was collected with the criterion that the origin of samples was known. 
It should be noted that the origin is ‘known’ based on forensic analysis and 
police information. While this is not optimal for the development and validation 
of a chemometric method, it is sufficient for the purposes of this example and 
represents a typical forensic situation. The data consists of impurity profiles of 
amphetamine samples, comprising (as mentioned above) 26 chromatographic 
peak areas of selected target compounds that correspond to impurities resulting 
from the manufacturing process. Answering the question whether an amphet-
amine seen earlier in the area, a comparison using a database have to be 
performed.

In order to find linkages between all seizures made before or seizures made in 
a certain time interval, the questioned data sets can be compared to data of the 
whole database or the time interval of interest by applying the same method.

Data import

The data sets have been imported into the ChemoRe software in form of a 
*.csv-file (Figure 11.8).

Figure 11.8	 Import of impurity profiles into ChemoRe. Each Dataset consists of 26 
chromatographic peak areas (type 1 data; numeric values)
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Data pre-processing

Due to differing concentrations of amphetamine in samples, the measured peak 
areas can be on different scales between samples. This makes it sensible to 
transform the data in each sample to the same scale. Additionally, certain impu-
rities may typically be present in higher quantities in one sample than in others. 
Therefore, it is a good idea to further transform the normalized values to make 
them more comparable in terms of importance. This normalization is achieved 
by dividing each profile by the sum of the peak areas in that profile which forces 
all measurements to the range from 0 to 1. This ensures that all impurity profiles 
are on the same scale between samples. Further data pre-processing is then 
performed by calculation of the fourth root of each normalized peak area [31, 
37]. Calculating logarithms or square roots are alternative methods for trans-
forming the data (also referred to as ‘weighing’ in the forensic literature). The 
effect of data pre-processing on original peak area of one target compound and 
on an original chromatogram represented by all 26 components is shown in 
Figures 11.9 and 11.10. 

Figure 11.9	 Effect of data pre-processing applied to one component (Benzylam-
phetamine) by Sum normalization and 4th root

Figure 11.10	 Illustration of the effect on the variables (x-axis) of data pre-processing 
(normalization and fourth root)

Chemometrics - Method development

To answer the presented questions of case-to-case and database comparison, 
comparisons were performed on sets of amphetamine samples. To this end, a 
measure of dissimilarity between the pre-processed profiles was used, describing 
to what extent two impurity profiles differ. Pearson distance is chosen here, 
following recommendations in the EHMPA method [31]. Intuitively, this distance 
measures the similarity between the shapes of the profiles rather than absolute 
differences between profiles which has previously been considered advanta-
geous. As an alternative other dissimilarity measures could be used, including the 
Euclidean and Manhattan distance. Based on the Pearson distances observed 
between samples of the same source and of different sources, the comparison 
method is evaluated similarly to example 1 by producing a ROC curve and corre-
sponding false positive and false negative rate curves. Based on these results, 
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a decision threshold is determined. The threshold involves a certain (fixed) error 
rate that is evaluated using the training dataset. Pairwise comparison of the 
confiscated amphetamine samples is performed according to this threshold.

Results:

The effects of normalization and scaling on the amphetamine impurity profiles 
are visualized by a graph with the pre-processed peak area on the ordinate 
and the component number on the horizontal axis. Examples of two profiles 
and the effect of the pre-processing on them are visualized in Figure 11.10. 
After pre-processing, the Pearson distances were calculated for each pair in the 
test dataset. For readability the distances were scaled to be in range from 0 to 
100. Based on these distances, the false positive and false negative rates were 
calculated and these are shown in Figure 11.11. Based on these results the 
decision threshold was set at 5.071 as this produced 5% false positive rate (0.05 
on the y-axis, intersection with green line) on the test dataset and 14% false 
negative rate (0.14 on the y-axis, intersection with red line). The overall perfor-
mance of the method can be seen in the ROC curve in Figure 11.12. Given the 
threshold that was chosen, the method was applied to the case data with results 
for the samples seized from the users and from the suspect. 

Figure 11.11	 Illustration in ChemoRe of the false positive and false negative rates on 
the test database

1	  Pearson distances were multiplied by factor 100 due to a better visualization and readability.

Figure 11.12	 The ROC curve for the amphetamine comparison method based on 
Pearson correlation distance. This curve together with the Area Under 
Curve (AUC) statistic provide information on the general performance 
of the method
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The findings of the profiling study were as follows:

Four of the seven seized amphetamine samples were found linked to the 4 
samples from the suspected sales person (Figure 11.13). Thus, the result of 
profiling analysis supports the investigative theory of a local distributor (case-
to-case). The other 3 seized samples were linked to each other but showed a 
different type of impurity profile than the remaining 4 seized samples (Figure 
11.14).

Figure 11.13	 Amphetamine seized from the suspect compared to samples seized 
from users

Figure 11.14	 Pairwise comparisons of amphetamine seized from users

Later on, the forensic laboratory was requested to evaluate these 3 samples in 
order to find relations to seizures made during the previous year on illegal street 
markets. After database comparison database links to 4 persons (suspect 1-4) in 
another city were observed. No previous information that would have connected 
these cases was available. This additional information could be provided to the 
investigating police unit.
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As an outcome of such a profiling analysis a distribution network was discov-
ered in Finland. The results of profiling analysis are presented in a graphical 
chart in Figure 11.15. Also, the sample found from the forest was linked to the 4 
samples from the suspect. This additional information could be provided to the 
investigating police unit.

Figure 11.15	 Graphical visualization of profiling analysis results

In cases of amphetamine profiling the identity or content of adulterants or dilu-
ents is not part of the chemical profiling and has therefore not been included 
in this example because the production of amphetamine is in focus. Analysis 
of adulterants or diluents could be performed if the answering to the original 
question from the investigative police unit would require such analysis e.g. if the 
trafficking route is of importance.

Note that the procedure described for amphetamine could in principle be applied 
to the comparison of items of any kind of material for which type 1 data have 
been obtained, e.g. other drugs, oil, metal or glass. For such comparisons, there 
may already be preferred ways to pre-process the data and measure dissimi-
larity but the general procedure should still be the similar.

11.3	 Example 3. Cocaine: identification and quantitation

Case history and Forensic Question

In a police investigation, the question arose whether certain material contained 
cocaine or not. Besides the identification, it was also of interest to determine the 
purity of the cocaine. 
For this purpose, analytical techniques like GC-MS and GC-FID are commonly 
used [38]. However, in Eliaerts et al. [6] the implementation of a combined iden-
tification and fast quantification method for cocaine samples based on a FT-IR 
instrument is described. The FT-IR instrument is suitable for this type of analysis 
because the measurement is fast, a sample preparation is not required and it 
has a high identification power. The quantitative result obtained by the FT-IR 
provides a ‘rough estimate’ of the cocaine concentration. If a more precise result 
is needed, the analysis done by GC-FID or GC–MS required.

Selection of Parameters

The authors of “Rapid classification and quantification of cocaine in seized 
powders with ATR-FTIR and chemometrics, Drug Test“ [6] supplied the FT- IR 
data of cocaine that was subsequently used for training and testing purposes. 
Typical FT-IR spectra of cocaine preparations are presented in Figure 11.16.

Figure 11.16	 FTIR-spectrum of unknown sample (red) between cocaine 
samples of low (green) and high purity (blue)
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Classification of Parameters

Example 3 contains Type 2 data with a training dataset; the data pre-processing 
and data analysis are performed to answer classification (identification) and 
quantification (determination of concentration) questions.

Training- and Testing Data

For both identification and quantification, the corresponding datasets were 
divided into training and testing datasets by randomly sampling 80% of the data 
to the former, and using the rest for testing. In the case of identification this 
resulted in 412 and 103 samples for training and testing respectively, and in 
the case of quantification, this resulted in 302 and 76 samples for training and 
testing respectively. Note that the datasets for identification and quantification 
were different, since in order to do quantification the cocaine must already be 
identified.

Data import 

The spectral data sets have been imported into the ChemoRe software in form 
of a *.csv-file for classification (Figure 11.17) and quantification (Figure 11.18). 

Figure 11.17	 Import of spectral data for classification. Each Dataset consists of 
an FT-IR spectrum in the range of 500 – 4000 wavenumbers (type 2 
data; non-numeric)

Figure 11.18	 Import of spectral data for quantification. Each Dataset consists of 
an FT-IR spectrum in the range of 500 – 4000 wavenumbers (type 
2 data; numeric)

Data pre-processing

Although, Eliaerts et.al used standard normal variate transformation (SNV) 
as the pre-processing method for FT-IR spectral data. In this example, as a 
pre-processing step, each FT-IR spectrum was transformed to a z-score (as 
explained above) in order to limit the effect of baseline differences between 
measurements (Figure 11.19 classification, Figure 11.20 quantification). For 
this, sample means and variances were calculated from training data for each 
of the 2440 variables, corresponding to signal intensities of measured wave-
lengths ranging from 500 to 4000 nm, and these were used for standardiza-
tion of both training and test data. PCA was then applied in both cases to the 
standardized data (classification Figure 11.21 and quantification Figure 11.22). 
The principal components explaining 99% of the total variance in the data were 
retained in both cases which resulted in 44 and 24 variables retained, for iden-
tification and quantification respectively.
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Figure 11.19	 Data pre-processing (classification) - effect of standardization 
(z-score transformation) applied to spectral data of cocaine prepa-
rations

Figure 11.20	 Data pre-processing (quantification) - effect of SNV transforma-
tion followed by standardization applied to spectral data of cocaine 
preparations

Figure 11.21	 Data pre-processing (classification) – reducing dimensionality by 
applying PCA after standardization to spectral data of cocaine prepara-
tions

Figure 11.22	 Data pre-processing (quantification) – reducing dimensionality by 
applying PCA after standardization to spectral data of cocaine prepara-
tions
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Chemometrics - Method development

The first question of identification is framed as a statistical classification and the 
latter, (quantification) as a regression problem. To classify and quantify cocaine 
from the pre-processed data, Eliaerts et al. applied Support vector machines 
for discriminant analysis and regression (SVM-DA and SVM-R). In the current 
example, a simpler chemometric method is applied for the same purpose. To 
this end, LDA model is trained to determine whether a sample contains cocaine 
or not (Figure 11.23). In addition to identification, linear regression is used for 
quantification of cocaine shown in Figure 11.24. Again, PCA pre-processing 
is applied to training data. The regression model is then fitted to the reduced 
data using the measured concentration of cocaine as response variable. For 
the classification by LDA and the quantification by linear regression, separate 
training and test datasets are used for training and evaluation of the perfor-
mance of the methods.

Figure 11.23	 Applying LDA for classification whether a seized material contain 
	 cocaine or not

Figure 11.24	 Linear regression model based on training dataset of seized cocaine 
preparations
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Results:

For identification purposes, an LDA model was fitted to the pre-processed 
training data as described earlier. This can be framed as a classification problem 
by considering the property of a sample containing cocaine as defining a class 
while missing of cocaine defines the other class. The resulting model made 
correct predictions on the test data in 96% of the time, with approximately 4% 
false positive results and 0% false negatives (Figure 11.25). 

Figure 11.25	 Validation parameter of classification model

It should be noted that, unlike in the previous examples, no threshold for classi-
fication is determined by user and as such the error rates do not depend on user 
choices. For quantification, a linear regression was fit using the 24 retained prin-
cipal components as predictors. Applying the linear regression on the test data 
resulted in coefficient of determination of 0.89 with bias of approximately 0.47 
percent points and residual standard deviation of approximately 7.30 percent 
points (Figure 11.26).

Figure 11.26	 Validation parameter of quantification model

The performance of the identification and quantification method is somewhat 
reduced compared to [6] where a more advanced method was applied. Here 
simpler methods were preferred in order to illustrate how standard chemomet-
rics may be applied on spectral data.

As to the final example 3 on simultaneous identification and quantification of 
cocaine, here it is illustrated that with the application of chemometric methods, 
the spectral data of FT-IR can be used for identification as well as quantification. 
It should be noted that the number of principal components that are retained is 
critical for the performance of the model and here the choice of retaining compo-
nents explaining 99% of the total variance is rather ad hoc. One could also opti-
mize this number by so-called cross validation or by selecting the variance limit 
based on the performance measured on the test set, but in this case, it would 
be necessary to use additional data to test the end result in order to avoid over-
fitting. While here statistical classification methods were used for the purposes 
of identification, the same process could be extended for a forensic classifica-
tion problem where one needs to classify samples according to multiple known 
sources.
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13	 APPENDIX

This guideline can be found from the ENFSI website: 
http://enfsi.eu/documents/forensic-guidelines/

ChemoRe software and following additional material are available upon request 
from ENFSI Drugs Working Group and from the EPE web site (Europol Platform 
for Experts):

1.	 ChemoRe user manual

2.	 ChemoRe validation report

3.	 Data of the examples 1 to 3

4.	 Tips and Tricks of Data Export
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